Trigonometry

Lesson 1: Trigonometry - Angles and Quadrants

An angle of rotation can be determined by rotating a ray about its endpoint or \qquad . The starting position of the ray is the \qquad side of the angle. The position after rotation is the \qquad side. If the rotation is
-clockwise, the direction is \qquad .
If the rotation is clockwise, the direction is \qquad .

An angle in a coordinate plane is in \qquad position if:
a) its vertex is at the \qquad ; and
b) its initial side is the \qquad x-axis.

Since a full rotation or one revolution is \qquad , a measure of 1 \qquad is equivalent to \qquad of a revolution. Common rotations of $\frac{1}{4}, \frac{1}{6}, \frac{1}{8}$, and $\frac{1}{12}$ are used and translate into angle measures of
\qquad ${ }^{0}$, ${ }^{0}$ ${ }^{0}$, $\quad{ }^{0}$ and \qquad ${ }^{0}$ respectively. Angles in standard position can have positive and measures.

Recall: The basic trigonometric ratios: $\quad \sin \theta=\quad \cos \theta=\quad \tan \theta=$
1)
Quadrant I

$$
\underline{\theta}<90^{\circ} \quad x>0 \quad y>0
$$

$$
\sin \theta=
$$

$$
\cos \theta=
$$

$$
\tan \theta=
$$

2) Quadrant II
$\underline{90^{\circ}<\theta<180^{\circ} \quad x<0 \quad y>0}$

$$
\begin{aligned}
& \sin \theta= \\
& \cos \theta= \\
& \tan \theta=
\end{aligned}
$$

3) Quadrant III

4) Quadrant IV

$180^{\circ}<\theta<270^{\circ} x<0 \quad y<0$
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
$270^{\circ}<\theta<360^{\circ} x>0 \quad y<0$
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

What happens when $\theta=90^{\circ}$?

What happens when $\theta=180^{\circ}$?

$$
\sin \theta=
$$

$$
\cos \theta=
$$

$\tan \theta=$

What happens when $\theta=360^{\circ}$?
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

Note that each function is \qquad in \qquad quadrants and \qquad in quadrants.

There is a \qquad that will remind you which trig function is \qquad in each quadrant:

Related or Reference Angle:

This is the \qquad angle (θ \qquad 90°) formed between the \qquad arm of the angle and the \qquad x-axis.

$\theta_{r}=$

$\theta_{r}=$

Example:

Determine the exact value of $\sin \theta, \cos \theta$, and $\tan \theta$ for the angle whose terminal arm goes through the point $P(2,-5)$. Also, find θ.

Solution:

1) Sketch
2) Find r

3) Find $\sin \theta, \cos \theta$, and $\tan \theta$. (Be careful with your signs)
4) Find θ_{r} and θ.

Example: Given $\sin \theta=\frac{2}{\sqrt{7}}$ and θ is in quadrant II, determine the value of $\cos \theta, \tan \theta, \theta$ and θ_{r}.

Practice:

1) Determine the reference (related) angle for each angle given in standard position.
a) 98°
b) 120°
c) 352°
d) 263°
e) 75°
f) 195°
2) The following points are on the terminal arm of an angle. For each:
i) Sketch the angle, θ and the reference angle, θ_{r}.
ii) Determine the exact distance, r, from the origin to the point, P.
iii) Determine the exact value of $\sin \theta, \cos \theta$, and $\tan \theta$.
iv) Determine the value of θ and θ_{r}, to the nearest degree.
a) $P(5,3)$
b) $P(-3,4)$
c) $P(8,-2)$
d) $P(-3,-7)$
3) Point $P(x, y)$ is on the terminal arm of each angle below in standard position. The distance between r and P is given. Determine the coordinates of point P, to the nearest tenth, and show a simple sketch of all of this information for each point.
a) $\theta=35^{\circ} ; r=12$
b) $\theta=130^{\circ} ; r=6$
c) $\theta=290^{\circ} ; r=9$
d) $\theta=223^{\circ} ; r=14$
4) Choose any angle, θ, in standard position from quadrant I. Determine the value of: $\sin ^{2} \theta+\cos ^{2} \theta=$? Repeat this for any angle in QII. Then QIII and QIV. What do you notice? $)^{-}$
5) For what values of θ, in the interval $\left[0,360^{\circ}\right]$ are the following conditions met?
a) $\sin \theta<0$ and $\cos \theta>0$
b) $\sin \theta>0$ and $\cos \theta \leq 0$
c) $\tan \theta>0$
d) $\cos \theta \leq 0$
6) Given $\cos \theta=\frac{5}{13}$ and θ is in quadrant IV, find $\sin \theta, \tan \theta, \theta$ and θ_{r}.
7) Given $\sin \theta=-\frac{2}{\sqrt{5}}$ and θ is in quadrant III, find $\cos \theta, \tan \theta, \theta$ and θ_{r}.

Lesson 2: Trigonometric Equations

Recall:

- The four quadrants and the \qquad rule for \qquad trig functions.
- Related angle, θ_{r} (angle between \qquad arm \& \qquad x-axis.)

Examples: Solve the following equations for θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$ or $\left[0^{\circ}, 360^{\circ}\right]$

1) $\sin \theta=0.5$
2) $\cos \theta=0.3$
3) $2 \sin \theta+1=0$
4) $\tan \theta=\sqrt{3}$
5) $3 \tan \theta-5=7 \tan \theta-6$
6) $4 \sin \theta-1=4$
7) $\cos \theta-3=0$

Practice: \quad Solve the following equations for θ for the interval $\left[0^{\circ}, 360^{\circ}\right]$

1) $-3 \sin \theta=2$
2) $5 \cos \theta+2=4$
3) $\frac{\tan \theta}{6}-1=0$

Practice:

Determine the solution for each of the following trigonometric equations over the interval $\left[0^{\circ}, 360^{\circ}\right]$, to the nearest degree.

1) a) $\cos \theta=-\frac{2}{3}$
b) $\sin \theta+1=0$
c) $\tan \theta-2=5$
2) a) $2 \cos \theta=2$
b) $-3 \sin \theta=2$
c) $\frac{\tan \theta}{2}=5$
3) a) $3 \cos \theta-2=0$
b) $5 \tan \theta+4=0$
c) $\frac{\tan \theta}{6}-1=0$
4) a) $2 \cos \theta+1=\frac{1}{2}$
b) $4 \tan \theta-7=5 \tan \theta-6$
c) $3 \sin \theta=4$
Answers: 1) a) $132^{\circ}, 228^{\circ}$
b) 270° c) $82^{\circ}, 262^{\circ}$
5) a) $0^{\circ}, 360^{\circ}$
b) $222^{0}, 318^{0}$
c) $84^{0}, 264^{\circ}$
6) a) $48^{\circ}, 312^{\circ}$
b) $141^{\circ}, 321^{\circ}$
c) $81^{\circ}, 261^{\circ}$
7) a) $104^{\circ}, 256^{\circ}$
b) $135^{\circ}, 315^{\circ}$
c) $)^{-}$

Lesson 3: Special Angles \& Trigonometric Functions

Recall the three \qquad trigonometric functions:

Special Angles:

90°
Family \Rightarrow This family contains all \qquad of 90°.
\Rightarrow \qquad etc.

All points with an angle of $90^{\circ}: \cos 90^{\circ}=$ \qquad $\sin 90^{\circ}=$ \qquad (Along the \qquad y-axis)

All points with an angle of 180° : $\cos 180^{\circ}=$ \qquad $\sin 180^{\circ}=$ \qquad (along the \qquad x-axis)

All points with an angle of 270° : $\cos 270^{\circ}=$ \qquad $\sin 270^{\circ}=$ \qquad (along the \qquad y-axis)

All points with an angle of 360° or $0^{\circ}: \cos 90^{\circ}=$ \qquad $\sin 90^{\circ}=$ \qquad (along the \qquad x-axis)

Given the point $(4,0)$, what is θ ? \qquad Given the point $(0,5)$, what is θ ? \qquad
Given the point $(0,-7)$, what is θ ? \qquad Given the point $(-45.6,0)$, what is θ ? \qquad

$$
\begin{array}{ll}
\sin 270^{\circ}= & \cos 180^{\circ}= \\
\tan 90^{\circ}= & \tan 180^{\circ}=
\end{array}
$$

$\tan 270^{\circ}=$ \qquad

Within the 90° family of angles, the three possible values for $\sin \theta \& \cos \theta$: \qquad , \qquad and \qquad .

Family \Rightarrow This family contains the multiples of 45°
\Rightarrow \qquad , etc.

All points with an angle of $45^{\circ}: \cos 45^{\circ}=$ \qquad $\sin 45^{\circ}=$ \qquad
All points with an angle of $135^{\circ}: \cos 135^{\circ}=$ \qquad $\sin 135^{\circ}=$ \qquad
All points with an angle of $225^{\circ}: \cos 225^{\circ}=$ \qquad $\sin 225^{\circ}=$ \qquad
All points with an angle of $315^{\circ}: \cos 315^{\circ}=$ \qquad $\sin 315^{\circ}=$ \qquad

Given the point $(8,8)$ what is θ ? \qquad
Given the point $(-6,-6)$, what is θ ? \qquad
Given the point $(7,-7)$, what is θ ? \qquad
$\sin \left(315^{\circ}\right)=$ \qquad
$\cos \left(225^{\circ}\right)=$ \qquad
$\tan (45)=$ \qquad
$\tan \left(135^{\circ}\right)=$ \qquad $\cos \left(45^{\circ}\right)=$ \qquad
60°
Family \Rightarrow This family contains the multiples of 60°

$$
\Rightarrow
$$

\qquad , etc.

All points with an angle of $60^{\circ}: \cos 60^{\circ}=$ \qquad $\sin 60^{\circ}=$ \qquad
All points with an angle of $120^{\circ}: \cos 120^{\circ}=$ \qquad $\sin 120^{\circ}=$ \qquad
All points with an angle of $240^{\circ}: \cos 240^{\circ}=$ \qquad $\sin 240^{\circ}=$ \qquad All points with an angle of $300^{\circ}: \cos 300^{\circ}=$ \qquad $\sin 300^{\circ}=$ \qquad

$$
\begin{array}{ll}
\sin \left(120^{\circ}\right)= & \cos \left(60^{\circ}\right)= \\
\cos \left(300^{\circ}\right)= & \sin \left(240^{\circ}\right)= \\
\tan \left(60^{\circ}\right)= & \tan \left(300^{\circ}\right)=
\end{array}
$$

30°
 Family \Rightarrow This family contains the multiples of 30° \Rightarrow
 \qquad , etc.

All points with an angle of $30^{\circ}: \cos 30^{\circ}=$ \qquad $\sin 30^{\circ}=$ \qquad All points with an angle of $150^{\circ}: \cos 150^{\circ}=$ \qquad $\sin 150^{\circ}=$ \qquad All points with an angle of $210^{\circ}: \cos 210^{\circ}=$ \qquad $\sin 210^{\circ}=$ \qquad
 All points with an angle of $330^{\circ}: \cos 330^{\circ}=$ \qquad $\sin 330^{\circ}=$ \qquad
$\cos \left(30^{\circ}\right)=$ \qquad
$\sin \left(330^{\circ}\right)=$ \qquad
$\tan \left(30^{\circ}\right)=$ \qquad

$$
\sin \left(150^{\circ}\right)=
$$

\qquad
$\cos \left(210^{\circ}\right)=$ \qquad
$\tan \left(150^{\circ}\right)=$ \qquad
$\tan \left(210^{\circ}\right)=$
\qquad

When dealing with the unit circle we are easily able to determine the \qquad values of the trigonometric functions. When the exact value is requested, \qquad CALCULATOR may be used!

Example: Find the exact value of:

$$
\cos \left(300^{\circ}\right)+\sin \left(30^{\circ}\right)-\cos ^{2}\left(180^{\circ}\right)
$$

Example: Solve for θ

$$
\text { for } 0^{\circ} \leq \theta \leq 360^{\circ}: \quad \cos \theta=-\frac{1}{2}
$$

1) Given that $0 \leq \theta \leq 360^{\circ}$, determine the quadrants in which $P(\theta)$ lies.
a) 120°
b) 330°
c) -45°
d) 200°
2) Find the exact value for each of the following (without looking at the previous notes ©):
a) $\sin 30^{\circ}$
b) $\sin 240^{\circ}$
c) $\cos 180^{\circ}$
d) $\tan 315^{\circ}$
e) $\cos 210^{\circ}$
f) $\cos 45^{\circ}$
g) $\sin 300^{\circ}$
h) $\tan 330^{\circ}$
i) $\cos 120^{\circ}$
j) $\tan 225^{\circ}$
3) Find the exact value of the following:
a) $\sin 90^{\circ} \times \cos 360^{\circ} \times \tan 30^{\circ}$
b) $\tan 120^{\circ} \cdot \cos 135^{\circ}+\sin 270^{\circ} \cdot \tan 150^{2}$
4) Determine the quadrant(s) in which the point $P(\theta)$ will lie under the following conditions:
a) $\sin \theta$ is positive.
b) $\tan \theta<0$
c) $\sin \theta>0$ and $\cos \theta<0$
d) $\sin \theta=-3 / 5$ and $\cos \theta=4 / 5$
5) True or false? $\quad \frac{\sin 60^{\circ}}{1+\cos 60^{\circ}}=\frac{1-\cos 60^{\circ}}{\sin 60^{\circ}}$
6) Prove this to be true:

Justify your answer using two different methods.

$$
2 \cos ^{2}\left(30^{\circ}\right)-1=\cos ^{2}\left(30^{\circ}\right)-\sin ^{2}\left(30^{\circ}\right)
$$

6) Determine the exact distance of each point from the origin.
a) $(4,6)$
b) $(-7,3)$
c) $(5,-8)$

Lesson 4: Trigonometry - Two Right-Triangles

Recall: the three Trigonometric ratios:

For Example: With respect to Δ MIT, identify each of these parts.
a) the side opposite angle T
b) the side adjacent to $\angle \mathrm{T}$

c) the side adjacent to $\angle M$
d) the hypotenuse
e) $\quad \cos T$
f) $\tan T$
g) $\sin M$
h) $\quad \cos M$
i) Pythagorean theorem

Example: Determine the missing measures in each right triangle. Round side measures to one decimal place and angle measures to the nearest degree.
$\angle G, d, g=$?
($34^{\circ}, 13.3,8.9$)
$\angle C, a, c=$?
$\left(47^{0}, 10.7,14.7\right)$
a)

b)

Example: Determine the missing measures in each right triangle. Round side measures to one decimal place and angle measures to the nearest degree.
$\angle P, \angle G, p=?$
($52^{0}, 38^{0}, 19.2$)
$\angle C, \angle \mathrm{~W}, \mathrm{w}=$?
$\left(32^{0}, 58^{0}, 23.6\right)$
c)

d)

Example: The vertical distance between floors at a department store is 10 m . An escalator that has an angle of inclination of 26° connects two floors. How long (x) is the escalator? [22.8 m]

Example: Calculate the length of side BC. [23.4 m]

Example: A non-standard roof on a house has one side 18 m long and the other side is 23 m long. The peak is 14 m high.
a) What is the measure of the angle formed at the peak? $\left[52.5^{\circ}\right]$

18 m
14 m
23 m
b) What is the span of the roof? [29.6 m]

Practice: (Answer \#1-5 on a separate piece of paper)

1) Given the diagram on the left below, find the length of $D C$. (24.1)

2) Given the diagram on the right above, find the length of $R Q$. (12.6)
3) Given the diagram on the left below, find CD. (19.94)

4) Using the diagram on the right above, $B C=C D, A E=E C=4, \angle B=50^{\circ}$. Find $\angle D .\left(30.8^{\circ}\right)$
5) Given the diagram as marked, find $\angle E D C$.
(Diagram is not to scale). (21.10)
6) A television tower is 30 m high.

a) How long is the shadow when the sun is at an
angle of elevation of 60° ? [17.3 m]

b) How long is the shadow when the sun is at an angle of elevation of 45° ? [30 m]
7) At a point 28 m from a building, the angle of elevation to the top of the building is 65°. The observer's eyes are 1.5 m above the ground. How tall is the building? [61.6 m]

8)

Two cabins, A and C are located a distance apart on the bank of a river. On the other side of the river from the two cabins is a boathouse, B . It is 420 m from the cabin C to the boathouse, and the angle at C between the boathouse and cabin A is 15°. From cabin A, the angle between C and the boathouse B is 70°.
a) What is x ? [108.7 m]

b) How far is cabin A from the boathouse? [115.7 m]
c) How far apart are the cabins? [445.3 m]

Lesson 5: Trigonometry - Sine Law

(1) When solving triangles, ALWAYS look for \qquad angles first. If right angles are involved you may use basic trigonometry $(\mathrm{SOH}$ \qquad
\qquad) and/or the \qquad Theorem (\qquad $+$ $=$ \qquad
(2) If right angles are NOT present, then the \qquad Law may be used.

- The Sine Law states that the ratio of the \qquad of an angle to the \qquad of the side opposite that angle is \qquad for the triangle. The \qquad of this ratio is also true.

Where, side a is \qquad angle A, side b is opposite angle \qquad , etc.

Example 1: Find the measures of side a and b and angle C. $\left[32.0 \mathrm{~m}, 76.7 \mathrm{~m}, 46.9^{\circ}\right]$

Example 2: Find the measures of angles D and E and side d. [69.6 $\left.{ }^{\circ}, 65.4^{\circ}, 18.6 \mathrm{~cm}\right]$

Example 3: Boats are anchored at positions J, K and M on a lake. Boats J and K are 80 m apart and J and M are 110 m apart. The angle between the lines of sight from K to J , and K to M is 120°. What is the angle between the lines of sight from J to K and J to M ? How far is it from K to M ? $\left[J=21.0^{\circ}, j=45.5 \mathrm{~m}\right]$ Sketch?

Practice:

1) a) Find the value of x.
b) Find the value of x.

2) Side $a=5.4, \angle B=44^{\circ}, \angle C=71^{\circ}$. Find side b.
3) $\angle A=64.28^{\circ}, \angle B=38.93^{\circ}, c=18$. Find a.
4) $b=67, c=67, \angle B=59^{\circ}$. Find $\angle A$, where $\triangle A B C$ is acute.
5) $a=32, b=52, \angle A=33^{\circ}$. Find $\angle B$, where $\triangle A B C$ is acute.

Lesson 6: Trigonometry - Cosine Law

If we draw a perpendicular line from $A B$ to C and apply the \qquad Theorem, we get

$$
\begin{array}{ll}
h^{2}= & \text { and } \\
\text { equate the } h^{2} \text { 's: } \quad h^{2}=h^{2}
\end{array}
$$

$$
a^{2}-x^{2}=b^{2}-(c-x)^{2}
$$

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \Rightarrow \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

When solving triangles:

(1) Check for right- \qquad $\left(90^{\circ}\right)$. \qquad trigonometric ratio's (SOH CAH TOA)
(2) Check for \qquad (a side and an \qquad angle). \qquad law.
(3) If none of the above possibilities exist: \square
\qquad law.

Example: Re-write the cosine law for side t and $\angle T$ of $\triangle S T R$.

Example: Find the measure of side a and angles B and C. $\left[15.2 \mathrm{~cm}, 76^{\circ}, 49^{\circ}\right]$

1. Right angles?
2. Sine-Law ratio's? (opposites?)
3. Use \qquad Law

Notice the relationship between the smallest angle and the \qquad side. Also the largest angle and the \qquad side.

Example: Find the measures of angles D, E and F. $\left[56.9^{\circ}, 62.5^{\circ}, 60.6^{\circ}\right]$

Practice:

1) $a=15, b=19, \angle C=50^{\circ}$. Find c.
2) $c=13, b=18, \angle A=70^{\circ}$. Find a.
3) $b=42, c=37, \angle A=150^{\circ}$. Find a.
4) $a=15, b=10, c=12$. Find $\angle A$ to the nearest degree.
5) $a=5, b=3, c=7$. Find $\angle B$ to the nearest degree.
6) $a=8, b=11, c=6$. Which is the smallest angle of $\triangle A B C$? Find it to the nearest degree.

Lesson 7: Applications of Sine \& Cosine Laws

Diagrams are NTS (not to scale). If no diagram is given, \qquad one to represent the situation before completing the exercise. Express all lengths to the nearest tenth and all angles to the nearest degree.

1. For each triangle, determine the indicated measures. [5.6, 4.6, 6.1, 62.1 ${ }^{\circ}$]
a)

b)

c)

Angle $B=$?
2. From a certain point, the angle of elevation to the top of a church steeple is 9°. At a point 100 m closer to the steeple, the angle of elevation is 15°. Calculate the height of the steeple. $[38.7 \mathrm{~m}]$

3. A tower is supported by two guy wires attached to the top of the tower and fixed to the ground on opposite sides of the tower 27 m apart. One wire is 19.3 m long and meets the ground at an angle of 53°. [$15.4 \mathrm{~m}, 21.8 \mathrm{~m}, 45^{\circ}$]
a) What is the height of the tower?
b) What is the length of the second wire?
c) What angle does the second wire make with the ground?
a) Determine Angle A.

b) Determine h.
c) Calculate the area of the park.
5. To determine the height of a cliff, a surveyor measured the angle of elevation of the top of the cliff from a point away from the base to be 45°. He then moved 20 m further away from the base of the cliff and found the angle of elevation to the top to be 37°. Determine the height of the cliff. [61.2 m]
6. The end of a lean-to for cattle is in the shape of an obtuse triangle as shown below. [10.1 ft., 48.1 ${ }^{\circ}$]
a) Determine the length of the roof.

b) Determine the angle that the roof of the shed makes with the ground.
7. In the design of a ski chalet, the slant of the roof must be steep enough for the snow to slide off. An architect originally designed the roof to span 45 feet with slanted sides of 36 ft and 30 ft . He decided it would be better to modify the roof by increasing the measure of the smaller angle by 10° thus increasing the length of the side opposite that angle. [51.6 ${ }^{\circ}, 36.2 \mathrm{ft}$.]
a) What is the new angle measure?

b) What is the new length of this side?

Lesson 8: Trigonometry - Ambiguous Case Problems

$$
\text { Recall basic trig. ratio's: } \quad \sin \theta=\quad \cos \theta=\quad \tan \theta=
$$

Sine Law:
Cosine Law:

When solving triangles and you are given \qquad sides and the non-included \qquad (SSA), the triangle may not be \qquad . It is possible that \qquad triangles, \qquad triangle, or \qquad triangles may exist for the given measurements. This is called the \qquad case.

The \qquad case occurs when the angle is \qquad the \qquad of the two sides. However, if the given angle is opposite the \qquad of the two given sides, there is \qquad ambiguity. That is, only \qquad triangle exists.

Recall: (non-ambiguous cases)

- If given \qquad or \qquad use \qquad Law. \Rightarrow only 1Δ exists.
- If given \qquad or \qquad use \qquad Law. \Rightarrow only 1Δ exists.

Investigation: For each of the following 5 cases:
a) Draw the triangles to scale; and
b) Determine how many triangles may be formed: $\underline{0}, \underline{1}$ or $\underline{2}$.

Case 1: $\quad \triangle A B C$ with $\angle C=100^{\circ}, b=5 \mathrm{~cm}, c=4 \mathrm{~cm}$
\qquad Δ 's

Case 2: $\quad \triangle A B C$ with $\angle C=30^{\circ}, b=5 \mathrm{~cm}, c=2 \mathrm{~cm}$
\qquad Δ 's

Case 3: $\quad \triangle A B C$ with $\angle C=30^{\circ}, b=5 \mathrm{~cm}, c=2.5 \mathrm{~cm}$
\qquad Δ

Case 4: $\quad \triangle A B C$ with $\angle C=30^{\circ}, b=5 \mathrm{~cm}, c=6 \mathrm{~cm}$
\qquad Δ

Case 5: $\quad \triangle A B C$ with $\angle C=30^{\circ}, b=5 \mathrm{~cm}, c=3 \mathrm{~cm}$ Δ 's (solve these)

Practice:

1) In $\triangle A B C, a=4, b=6$ and $\angle A=30^{\circ}$. Solve the \triangle.

A
2) In $\triangle D E F, e=2.5, f=5$ and $\angle E=30^{\circ}$. Solve the \triangle.
3) In $\triangle G H K, h=2, f=10$ and $\angle H=40^{\circ}$. Solve the Δ.
4) In $\triangle M N P, m=6, n=9$ and $\angle M=36^{\circ}$. Solve the Δ.
5) In $\triangle A B C, a=1.9, b=6.1, \angle A=31^{\circ}$. Solve the Δ.
6) In $\triangle D E F, d=3, e=6, \angle D=30^{\circ}$. Solve the \triangle.
7) In $\Delta G H I, g=4, h=3, \angle H=29^{\circ}$. Solve the Δ.
8) In $\triangle J K M, j=8.8, k=12, \angle J=27^{\circ}$. Solve the Δ.

Do you still want more practice?? Here you go . . .

Find the possible values of the indicated side:
9) In $\triangle A B C, \angle B=34^{\circ}, a=4, b=3$. Find c.

10) In $\triangle X Y Z, \angle X=13^{\circ}, x=12, y=15$. Find z.
11) In $\triangle A B C, \angle B=34^{\circ}, a=4, b=5$. Find c.
12) In $\triangle R S T, \angle R=130^{\circ}, r=20, t=16$. Find s.
13) In $\triangle M B T, \angle M=170^{\circ}, m=19, t=11$. Find b.
14) In $\triangle A B C, \angle B=34^{\circ}, a=4, b=2$. Find c.

Find all the possible values of the indicated angle.
15) In $\triangle A B C, \angle A=19^{\circ}, a=25, c=30$. Find $\angle C$.
16) In $\triangle H D J, \angle H=28^{\circ}, h=50, d=20$. Find $\angle D$.
17) In $\triangle X Y Z, \angle X=58^{\circ}, x=9.3, z=7.5$. Find $\angle Z$.
18) In $\triangle B I G, \angle B=39^{\circ}, b=900, g=1000$. Find $\angle I$.

