# Trigonometry



# Lesson 1: Trigonometry - Angles and Quadrants



MPC 30













#### Related or Reference Angle:



#### Example:

Determine the exact value of sin  $\theta$ , cos  $\theta$ , and tan  $\theta$  for the angle whose terminal arm goes through the point P(2, -5). Also, find  $\theta$ .





3) Find sin  $\theta$ , cos  $\theta$ , and tan  $\theta$ . (Be careful with your signs)

4) Find  $\theta_r$  and  $\theta$ .

**Example:** Given  $\sin \theta = \frac{2}{\sqrt{7}}$  and  $\theta$  is in quadrant II, determine the value of  $\cos \theta$ , tan  $\theta$ ,  $\theta$  and  $\theta_r$ .

#### Practice:

- Determine the *reference* (related) angle for each angle given in standard position.
   a) 98°
   b) 120°
   c) 352°
   d) 263°
   e) 75°
   f) 195°
- 2) The following points are on the terminal arm of an angle. For each:
  - i) Sketch the angle,  $\theta$  and the reference angle,  $\theta_r$ .
  - ii) Determine the *exact* distance, r, from the origin to the point, P.
  - iii) Determine the *exact* value of  $\sin \theta$ ,  $\cos \theta$ , and  $\tan \theta$ .
  - iv) Determine the value of  $\theta$  and  $\theta_r$ , to the nearest degree.
  - a) P(5, 3) b) P(-3, 4) c) P(8, -2) d) P(-3, -7)
- 3) Point P(x, y) is on the terminal arm of each angle below in standard position. The distance between r and P is given. Determine the *coordinates* of point P, to the nearest tenth, and show a simple *sketch* of all of this information for each point.
  - a)  $\theta = 35^{\circ}$ ; r = 12 b)  $\theta = 130^{\circ}$ ; r = 6 c)  $\theta = 290^{\circ}$ ; r = 9 d)  $\theta = 223^{\circ}$ ; r = 14
- 4) Choose any angle,  $\theta$ , in standard position from quadrant I. Determine the value of:  $\sin^2\theta + \cos^2\theta = ?$ Repeat this for any angle in QII. Then QIII and QIV. What do you notice?
- 5) For what values of  $\theta$ , in the interval [0, 360°] are the following conditions met? a)  $\sin\theta < 0$  and  $\cos\theta > 0$  b)  $\sin\theta > 0$  and  $\cos\theta \le 0$  c)  $\tan\theta > 0$  d)  $\cos\theta \le 0$
- 6) Given  $\cos\theta = \frac{5}{13}$  and  $\theta$  is in quadrant IV, find  $\sin\theta$ ,  $\tan\theta$ ,  $\theta$  and  $\theta_r$ . 7) Given  $\sin\theta = -\frac{2}{\sqrt{5}}$  and  $\theta$  is in quadrant III, find  $\cos\theta$ ,  $\tan\theta$ ,  $\theta$  and  $\theta_r$ .

Answers: 1)  $82^{\circ}$ ,  $60^{\circ}$ ,  $8^{\circ}$ ,  $83^{\circ}$ ,  $75^{\circ}$ ,  $15^{\circ}$  2) a)  $_{r=\sqrt{34}$ ,  $\sin\theta = \frac{3\sqrt{34}}{34}$ ,  $\cos\theta = \frac{5\sqrt{34}}{34}$ ,  $\tan\theta = \frac{3}{5}$ ,  $\theta = \theta$ ,  $= 31^{\circ}$  b)  $_{r=5$ ,  $\sin\theta = \frac{4}{5}$ ,  $\cos\theta = -\frac{3}{5}$ ,  $\tan\theta = -\frac{4}{3}$ ,  $\theta = 127^{\circ}$ ,  $\theta$ ,  $= 53^{\circ}$ c)  $_{r=2\sqrt{17}$ ,  $\sin\theta = -\frac{\sqrt{17}}{17}$ ,  $\cos\theta = \frac{4\sqrt{17}}{17}$ ,  $\tan\theta = -\frac{1}{4}$ ,  $\theta = 346^{\circ}$ ,  $\theta$ ,  $= 14^{\circ}$  d)  $_{r=\sqrt{58}}$ ,  $\sin\theta = -\frac{7\sqrt{58}}{58}$ ,  $\cos\theta = -\frac{3\sqrt{58}}{58}$ ,  $\tan\theta = \frac{7}{3}$ ,  $\theta = 247^{\circ}$ ,  $\theta_{r} = 67^{\circ}$ 3) a) (9.8, 6.9) b) (-3.9, 4.6) c) (3.1, -8.5) d) (-10.2, -9.5) 4) Juan (2) 5) (270, 360), [90, 180), (0, 90)U(180, 270), [90, 270] 6)  $_{-\frac{12}{13}}$ ,  $-\frac{12}{5}$ ,  $^{2}293^{\circ}$ ,  $67^{\circ}$  7)  $_{-\frac{1}{\sqrt{5}}}$ ,  $^{2}, 243^{\circ}$ ,  $63^{\circ}$ 

# Lesson 2: Trigonometric Equations

#### Recall:

• The four quadrants and the \_\_\_\_\_ rule for \_\_\_\_\_ trig functions.

• Related angle,  $\theta_r$  (angle between \_\_\_\_\_ arm & \_\_\_\_\_ x-axis.)

**Examples:** Solve the following equations for  $\theta$ , where  $0^0 \le \theta \le 360^0$  or  $[0^0, 360^0]$ 

1)  $\sin \theta = 0.5$ 

cos θ = 0.3

3)  $2\sin \theta + 1 = 0$ 

4) tan  $\theta = \sqrt{3}$ 

5)  $3\tan\theta - 5 = 7\tan\theta - 6$ 

6)  $4\sin\theta - 1 = 4$ 

MPC 30

**Practice:** Solve the following equations for  $\theta$  for the interval  $[0^0, 360^0]$ 

1) 
$$-3 \sin \theta = 2$$
 2)  $5 \cos \theta + 2 = 4$  3)  $\frac{\tan \theta}{6} - 1 = 0$ 



### <u>Practice</u>:

Determine the solution for each of the following trigonometric equations over the interval [0°, 360°], to the nearest degree.

| 1) a) $\cos \theta = -\frac{2}{3}$      | b) sin θ + 1 = 0             | c) $\tan \theta - 2 = 5$          |
|-----------------------------------------|------------------------------|-----------------------------------|
| 2) a) 2 cos θ = 2                       | b) -3 sin θ = 2              | c) $\frac{\tan\theta}{2} = 5$     |
| 3) a) 3 cos θ - 2 = 0                   | b) 5 tan θ + 4 = 0           | c) $\frac{\tan\theta}{6} - 1 = 0$ |
| 4) a) $2 \cos \theta + 1 = \frac{1}{2}$ | b) 4 tan θ – 7 = 5 tan θ – 6 | c) 3 sin θ = 4                    |

| Answers: 1) | ) a) 132°, 228° | b) 270° c) 82°, 2                      | 262 <sup>0</sup>                      | 2) a) 0°, 360°   | b) 222 <sup>0</sup> , 318 <sup>0</sup> | c) 84º, 264º |
|-------------|-----------------|----------------------------------------|---------------------------------------|------------------|----------------------------------------|--------------|
| 3)          | a) 48°, 312°    | b) 141 <sup>0</sup> , 321 <sup>0</sup> | c) 81 <sup>0</sup> , 261 <sup>0</sup> | 4) a) 104°, 256° | b) 135 <sup>0</sup> , 315 <sup>0</sup> | c) 🕀         |

| call the three                                                                                                      | trigonometric functions:                                                                                                                                                                                       |           |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (sin)<br>sin θ =                                                                                                    | $\frac{1}{\cos \theta} =$                                                                                                                                                                                      |           |
|                                                                                                                     |                                                                                                                                                                                                                |           |
| tan θ =                                                                                                             | _(fan)                                                                                                                                                                                                         |           |
| cial Angles:                                                                                                        |                                                                                                                                                                                                                |           |
| )<br>Family ⇒ Thi                                                                                                   | is family contains all of 90°.                                                                                                                                                                                 |           |
|                                                                                                                     |                                                                                                                                                                                                                |           |
| ⇒                                                                                                                   | , etc.                                                                                                                                                                                                         |           |
|                                                                                                                     | gle of <b>90°</b> : cos90° = sin90° =                                                                                                                                                                          |           |
| (Along the                                                                                                          | y-axis)                                                                                                                                                                                                        |           |
|                                                                                                                     |                                                                                                                                                                                                                |           |
|                                                                                                                     | gle of <b>180°</b> : cos180° = sin180° =                                                                                                                                                                       |           |
| (along the                                                                                                          | x-axis)                                                                                                                                                                                                        |           |
| (along the                                                                                                          | x-axis)<br>gle of <b>270º</b> : cos270º = sin270º =                                                                                                                                                            |           |
| (along the<br>All points with an an<br>(along the                                                                   | x-axis)<br>gle of <b>270°</b> : cos270° = sin270° =<br>y-axis)<br>gle of <b>360°</b> or <b>0°</b> : cos90° = sin90° =                                                                                          |           |
| (along the<br>All points with an an<br>(along the<br>All points with an an<br>(along the                            | x-axis)<br>gle of <b>270°</b> : cos270° = sin270° =<br>y-axis)<br>gle of <b>360°</b> or <b>0°</b> : cos90° = sin90° =                                                                                          | hat is θ? |
| (along the<br>All points with an and<br>(along the<br>All points with an and<br>(along the<br>Given the point (4, 0 | x-axis)<br>gle of <b>270</b> °: cos270° = sin270° =<br>y-axis)<br>gle of <b>360°</b> or <b>0°</b> : cos90° = sin90° =<br>x-axis)                                                                               |           |
| (along the<br>All points with an and<br>(along the<br>All points with an and<br>(along the<br>Given the point (4, 0 | x-axis)<br>gle of <b>270</b> °: cos270° = sin270° =<br>gle of <b>360</b> ° or <b>0</b> °: cos90° = sin90° =<br>x-axis)<br>), what is θ? Given the point (0, 5), w<br>7), what is θ? Given the point (-45.6, 0) |           |

-•

Within the 90° family of angles, the three possible values for  $sin\theta \& cos\theta$ : \_\_\_\_\_, \_\_\_\_, and \_\_\_\_\_.

| MPC 30                                       |                                                                                                        |                                                |   |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|---|
|                                              | his family contains the <i>mult</i>                                                                    | •                                              |   |
| All points with an a<br>All points with an a | ngle of 45°: cos45° =<br>ngle of 135°: cos135° =<br>ngle of 225°: cos225° =<br>ngle of 315°: cos315° = | sin135 <sup>0</sup> =<br>sin225 <sup>0</sup> = | _ |
| Given the point (-6<br>Given the point (7,   | 8) what is 0?<br>, -6), what is 0?<br>-7), what is 0?<br>cos(225 <sup>0</sup> ) =                      | tan(45) =                                      |   |
|                                              | cos(45°) =                                                                                             |                                                |   |
| ⇒<br>All points with an a                    | his family contains the <i>mult</i><br>ngle of 60 <sup>0</sup> : cos60 <sup>0</sup> =                  | , etc, etc                                     |   |
| All points with an a                         | ngle of 120°: cos120° =<br>ngle of 240°: cos240° =<br>ngle of 300°: cos300° =                          | sin240 <sup>0</sup> =                          |   |
| sin(120°) =                                  | cos(60°) =                                                                                             |                                                |   |

cos(300°) = \_\_\_\_\_ sin(240°) = \_\_\_\_\_

tan(60°) = \_\_\_\_\_ tan(300°) = \_\_\_\_\_



When dealing with the unit circle we are easily able to determine the \_\_\_\_\_\_ values of the trigonometric functions. When the **exact value** is requested, \_\_\_\_\_ **CALCULATOR** may be used!

| Example: | Find the exact value of: | Example: | Solve for $\boldsymbol{\theta}$ |
|----------|--------------------------|----------|---------------------------------|
|          |                          |          |                                 |

 $\cos (300^{\circ}) + \sin (30^{\circ}) - \cos^{2}(180^{\circ})$  for  $0^{\circ} \le \theta \le 360^{\circ}$ :  $\cos \theta = -\frac{1}{2}$ 

| 1)  | Given that $0 \le \theta \le 3$ a) 120° | 60°, determine the q<br>b) 330° |                        | P(θ) lies.<br>-45 <sup>0</sup>                | d) 200°                           |
|-----|-----------------------------------------|---------------------------------|------------------------|-----------------------------------------------|-----------------------------------|
| 21  | Find the exact value                    | e for each of the foll          | owing (without looki   | ag at the providue r                          | votos 💬 l:                        |
| د ۲ | _                                       |                                 |                        |                                               |                                   |
|     | a) sin30 <sup>0</sup>                   | b) sin240 <sup>0</sup>          | c) cos180 <sup>0</sup> | d) tan315 <sup>0</sup>                        | e) cos210 <sup>0</sup>            |
|     |                                         |                                 |                        |                                               |                                   |
|     |                                         | 0                               |                        |                                               |                                   |
|     | f) cos45º                               | g) sin300°                      | h) tan330 <sup>0</sup> | i) cos120º                                    | j) tan225º                        |
|     |                                         |                                 |                        |                                               |                                   |
|     |                                         |                                 |                        |                                               |                                   |
| 3)  | Find the exact value                    | e of the following:             |                        |                                               |                                   |
|     | a) sin90° x cos360                      |                                 | b) tan120              | $0^{\circ} \bullet \cos 135^{\circ} + \sin 2$ | $270^{\circ}$ • tan $150^{\circ}$ |
|     | u) singo x cossoo                       | X TUNOU                         |                        | - $        -$                                 |                                   |

4) Determine the quadrant(s) in which the point  $P(\theta)$  will lie under the following conditions: a)  $\sin\theta$  is positive. b)  $\tan\theta < 0$  c)  $\sin\theta > 0$  and  $\cos\theta < 0$  d)  $\sin\theta = -3/5$  and  $\cos\theta = 4/5$ 

| 5) | True or false?              | $\frac{\sin 60^{\circ}}{1 + \cos 60^{\circ}} = \frac{1 - \cos 60^{\circ}}{\sin 60^{\circ}}$ | 6) Prove this to be true:                         |
|----|-----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|
|    | Justify your answer using t | two different methods.                                                                      | $2\cos^2(30^0) - 1 = \cos^2(30^0) - \sin^2(30^0)$ |

6) Determine the exact distance of each point from the origin.
a) (4, 6)
b) (-7, 3)
c) (5, -8)

Answers: 1) II, IV, IV, III 2)  $\frac{1}{2}, -\frac{\sqrt{3}}{2}, -1, -1, -\frac{\sqrt{3}}{2}$ 4) I&II, II&IV, II, IV 5) O Use special values & algebra 6)  $\sqrt{52} = 2\sqrt{13}, \sqrt{58}, \sqrt{89}$  MPC 30

# Lesson 4: Trigonometry - Two Right-Triangles

**Recall:** the three Trigonometric ratios:



**Example:** Determine the missing measures in each right triangle. Round side measures to *one decimal* place and angle measures to the nearest *degree*.



**Example:** Determine the missing measures in each right triangle. Round side measures to one decimal place and angle measures to the nearest degree.



**Example:** The vertical distance between floors at a department store is 10 m. An escalator that has an angle of inclination of 26° connects two floors. How long (x) is the escalator? [22.8 m]



Example: Calculate the length of side BC. [23.4 m]

**Example:** A non-standard roof on a house has one side 18 m long and the other side is 23 m long. The peak is 14 m high.



b) What is the span of the roof? [29.6 m]



a) How long is the shadow when the sun is at an

```
angle of elevation of 60°? [17.3 m]
```

b) How long is the shadow when the sun is at an angle of elevation of  $45^{\circ}$ ? [30 m]

7) At a point 28 m from a building, the angle of elevation to the top of the building is 65°. The observer's eyes are 1.5 m above the ground. How tall is the building? [61.6 m]

8)

Two cabins, A and C are located a distance apart on the bank of a river. On the other side of the river from the two cabins is a boathouse, B. It is 420 m from the cabin C to the boathouse, and the angle at C between the boathouse and cabin A is  $15^{\circ}$ . From cabin A, the angle between C and the boathouse B is  $70^{\circ}$ .

a) What is x? [108.7 m]

- b) How far is cabin A from the boathouse? [115.7 m]
- c) How far apart are the cabins? [445.3 m]





1.5 m

28 m

### <u>Lesson 5</u>: Trigonometry – *Sine Law*

- When solving triangles, ALWAYS look for \_\_\_\_\_\_ angles first. If right angles are involved you may use basic trigonometry (SOH \_\_\_\_\_\_\_) and/or the \_\_\_\_\_\_)
  - Theorem (\_\_\_\_\_+\_\_=\_\_\_).
- ② If right angles are **NOT** present, then the \_\_\_\_\_ Law may be used.
- The Sine Law states that the ratio of the \_\_\_\_\_\_ of an angle to the \_\_\_\_\_\_ of the side *opposite* that angle is \_\_\_\_\_\_ for the triangle. The \_\_\_\_\_\_ of this ratio is also true.









length Pythagorean

right

sine

TOA

#### MPC 30



**Example 3:** Boats are anchored at positions J, K and M on a lake. Boats J and K are 80 m apart and J and M are 110 m apart. The angle between the lines of sight from K to J, and K to M is  $120^{\circ}$ . What is the angle between the lines of sight from J to K and J to M? How far is it from K to M? [J= $21.0^{\circ}$ , j=45.5 m] Sketch?

### Practice:

1) a) Find the value of x.





2) Side a = 5.4,  $\angle B$  = 44°,  $\angle C$  = 71°. Find side b.

3)  $\angle A = 64.28^{\circ}$ ,  $\angle B = 38.93^{\circ}$ , c = 18. Find a.

4) b = 67, c = 67,  $\angle B$  = 59<sup>0</sup>. Find  $\angle A$ , where  $\triangle ABC$  is acute.

5) a = 32, b = 52,  $\angle A$  = 33<sup>0</sup>. Find  $\angle B$ , where  $\triangle ABC$  is acute.

### Lesson 6: Trigonometry - Cosine Law



$$a^{2} = b^{2} + c^{2} - 2bc \cos A \implies \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

### ★ When solving triangles:



3 If *none* of the above possibilities exist:  $\rightarrow$  \_\_\_\_\_ *law.* 

**Example:** Re-write the cosine law for *side* t and  $\angle T$  of  $\triangle$  STR.

Example: Find the measure of side a and angles B and C. [15.2 cm, 76°, 49°]

- 1. Right angles?
- 2. Sine-Law ratio's? (opposites?)
- 3. Use \_\_\_\_\_ Law



Notice the relationship between the smallest angle and the \_\_\_\_\_\_ side. Also the largest angle and the \_\_\_\_\_\_ side.

Example: Find the measures of angles D, E and F. [56.9°, 62.5°, 60.6°]



### Practice:

1) a = 15, b = 19,  $\angle C$  = 50°. Find c.

2) c = 13, b = 18,  $\angle A = 70^{\circ}$ . Find a.

4) a = 15, b = 10, c = 12. Find  $\angle A$  to the nearest degree.

5) a = 5, b = 3, c = 7. Find  $\angle B$  to the nearest degree.

6) a = 8, b = 11, c = 6. Which is the *smallest* angle of  $\triangle ABC$ ? Find it to the nearest degree.

| Answers: | <b>1)</b> 14.8 | <b>2)</b> 18.2 | <b>3)</b> 76.3 | <b>4)</b> 85° | <b>5)</b> 22 <sup>0</sup> | <b>6)</b> ∠B=32 <sup>0</sup> |
|----------|----------------|----------------|----------------|---------------|---------------------------|------------------------------|
|----------|----------------|----------------|----------------|---------------|---------------------------|------------------------------|

MPC 30

# Lesson 7: Applications of Sine & Cosine Laws

Diagrams are NTS (*not* to scale). If no diagram is given, \_\_\_\_\_\_ one to represent the situation before completing the exercise. Express all *lengths* to the nearest *tenth* and all *angles* to the nearest *degree*.

1. For each triangle, determine the indicated measures. [5.6, 4.6, 6.1, 62.1°]





2. From a certain point, the angle of elevation to the top of a church steeple is 9°. At a point 100 m closer to the steeple, the angle of elevation is 15°. Calculate the height of the steeple. [38.7 m]



- 3. A tower is supported by two guy wires attached to the top of the tower and fixed to the ground on opposite sides of the tower 27 m apart. One wire is 19.3 m long and meets the ground at an angle of 53°. [15.4 m, 21.8 m, 45°]
  - a) What is the height of the tower?
  - b) What is the length of the second wire?
  - c) What angle does the second wire make with the ground?

a) Determine Angle A.



- b) Determine h.
- c) Calculate the area of the park.
- 5. To determine the height of a cliff, a surveyor measured the angle of elevation of the top of the cliff from a point away from the base to be 45°. He then moved 20 m further away from the base of the cliff and found the angle of elevation to the top to be 37°. Determine the height of the cliff. [61.2 m]

a) Determine the length of the roof.



b) Determine the angle that the roof of the shed makes with the ground.

- 7. In the design of a ski chalet, the slant of the roof must be steep enough for the snow to slide off. An architect originally designed the roof to span 45 feet with slanted sides of 36 ft and 30 ft. He decided it would be better to modify the roof by increasing the measure of the smaller angle by 10° thus increasing the length of the side opposite that angle. [51.6°, 36.2 ft.]
  - a) What is the new angle measure?



b) What is the new length of this side?

MPC 30

# <u>Lesson 8</u>: Trigonometry - Ambiguous Case Problems

*c* –

| Recall basic trig. ratio's:                                                     | sin $\theta$ =       | $\cos \theta =$                     | t                      | tan θ=                 |                  |          |  |  |
|---------------------------------------------------------------------------------|----------------------|-------------------------------------|------------------------|------------------------|------------------|----------|--|--|
| Sine Law:                                                                       | Cosine Law           |                                     |                        | Sine Law:              |                  | ine Law: |  |  |
| When solving triangles and<br>triangle may not be<br>triangles may exist for th |                      | It is possible th                   | at                     | triangles,             | _ triangle, or   |          |  |  |
| The                                                                             | case occur           | rs when the anale is                |                        | the                    |                  |          |  |  |
| of the two sides. However                                                       | , if the given       | angle is opposite the               | 2                      |                        | of the two given |          |  |  |
| sides, there is                                                                 |                      |                                     |                        |                        |                  |          |  |  |
| Recall: (non-ambiguous ca<br>• If given                                         | or                   |                                     |                        |                        |                  |          |  |  |
| If given                                                                        |                      |                                     | Law.                   | $\Rightarrow$ only $1$ | $\Delta$ exists. |          |  |  |
| Investigation: For ea                                                           |                      | •                                   |                        |                        |                  |          |  |  |
| a) Draw the triang                                                              | •                    |                                     | 1 2                    |                        |                  |          |  |  |
| d) Determine <i>now</i>                                                         | many triangle        | es may be formed: <u>0</u> ,        | <u>1</u> or <u>2</u> . |                        |                  |          |  |  |
|                                                                                 | C with ∠C = 1<br>∆'s | 00 <sup>0</sup> , b = 5 cm, c = 4 c | m                      |                        |                  |          |  |  |

**Case 2:**  $\triangle ABC$  with  $\angle C = 30^{\circ}$ , b = 5 cm, c = 2 cm \_\_\_\_\_Δ's

Case 3:  $\triangle ABC$  with  $\angle C = 30^{\circ}$ , b = 5 cm, c = 2.5 cm

Case 4:  $\triangle ABC$  with  $\angle C = 30^{\circ}$ , b = 5 cm, c = 6 cm  $\triangle$ 

Case 5:  $\triangle ABC$  with  $\angle C = 30^{\circ}$ , b = 5 cm, c = 3 cm  $\triangle s$  (solve these)

C

С

C

C

### <u>Practice</u>:

1) In  $\triangle ABC$ , a = 4, b = 6 and  $\angle A = 30^{\circ}$ . Solve the  $\triangle$ .

Α

2) In  $\triangle DEF$ , e = 2.5, f = 5 and  $\angle E$  = 30°. Solve the  $\triangle$ .

- 3) In  $\triangle$ GHK, h = 2, f = 10 and  $\angle$ H = 40°. Solve the  $\triangle$ .
- 4) In  $\triangle$ MNP, m = 6, n = 9 and  $\angle$ M = 36°. Solve the  $\triangle$ .
- 5) In  $\triangle ABC$ , a = 1.9, b = 6.1,  $\angle A$  = 31°. Solve the  $\triangle$ .
- 6) In  $\triangle DEF$ , d = 3, e = 6,  $\angle D$  = 30°. Solve the  $\triangle$ .
- 7) In  $\triangle$ GHI, g = 4, h = 3,  $\angle$ H = 29<sup>0</sup>. Solve the  $\triangle$ .
- 8) In  $\Delta JKM$ , j = 8.8, k = 12,  $\angle J$  = 27<sup>0</sup>. Solve the  $\Delta$ .

#### Do you still want *more* practice?? Here you go . . .

Find the possible values of the indicated *side*:

- 9) In  $\triangle ABC$ ,  $\angle B = 34^{\circ}$ , a = 4, b = 3. Find c.
- 10) In  $\triangle XYZ$ ,  $\angle X = 13^{\circ}$ , x = 12, y = 15. Find z.
- 11) In  $\triangle ABC$ ,  $\angle B = 34^{\circ}$ , a = 4, b = 5. Find c.
- 12) In  $\triangle RST$ ,  $\angle R = 130^{\circ}$ , r = 20, t = 16. Find s.
- 13) In  $\triangle MBT$ ,  $\angle M = 170^{\circ}$ , m = 19, t = 11. Find b.
- 14) In  $\triangle ABC$ ,  $\angle B = 34^{\circ}$ , a = 4, b = 2. Find c.

Find all the possible values of the indicated angle.

- 15) In  $\triangle ABC$ ,  $\angle A = 19^{\circ}$ , a = 25, c = 30. Find  $\angle C$ .
- 16) In  $\triangle HDJ$ ,  $\angle H = 28^{\circ}$ , h = 50, d = 20. Find  $\angle D$ .
- 17) In  $\triangle XYZ$ ,  $\angle X = 58^{\circ}$ , x = 9.3, z = 7.5. Find  $\angle Z$ .
- 18) In  $\triangle BIG$ ,  $\angle B = 39^{\circ}$ , b = 900, g = 1000. Find  $\angle I$ .

