Equilibrium Part 1 Practice Quiz

1. Write the mass action expression and calculate the Keq value for the following equation with the listed concentrations. $CH_4(g) + H_2O(g) \leftrightarrow CO(g) + 3 H_2(g)$

$$[CH_4] = 2 \times 10^{-3} M$$

$$[CH_4] = 2 \times 10^{-3} M$$
 $[H_2O] = 7 \times 10^{-3} M$

[CO] =
$$5 \times 10^{-3} \text{ M}$$
 [H₂] = $3 \times 10^{-3} \text{ M}$

$$[H_2] = 3 \times 10^{-3} \text{ M}$$

$$K_{eg} = \frac{[CO][H_2]^3}{[CH_2][H_2]} = \frac{(5\times10^{-3})(3\times10^{-3})^3}{[CH_2][H_2]} = \frac{9.64\times10^{-6}}{(2\times10^{-3})(7\times10^{-3})}$$

2. What is the concentration of O_2 if $Keq = 6.5 \times 10^{-8}$ and the concentrations of H_2 and H₂O are both 0.7M?

and
$$H_2O$$
 are both 0.7M? I_1guid

$$O_{2(g)} + 2H_2O_{(1)} + 2H_2O_{(1)}$$

$$G_{2(g)} + 2H_2O_{(1)} + 2H_2O_{(1)}$$

$$G_{3(g)} + 2H_2O_{($$

- 3. What is the concentration of HI if $Keq = 4.0 \times 10^3$ and the concentrations of H₂

$$K_{23} = \frac{H_{2(g)}}{[H_{2}][I_{2}]}$$

- $K_{3} = \underbrace{\text{LHI}^{2}}_{\text{CH2II2I}} + 2\text{HI}_{(g)} \xrightarrow{\text{H}_{2(g)} \text{I}_{2(g)}} \leftrightarrow 2\text{HI}_{(g)} \xrightarrow{\text{H}_{2(g)} \text{I}_{2(g)}} + 2\text{HI}_{(g)} \xrightarrow{\text{H}_{2(g)} \text{I}_{$
 - 4. An equilibrium system was kept at constant temperature and pressure in a five litre container. It contained 0.15 mole of SO₂, 0.25 mole of NO₂, 0.40 mole of NO, and 0.50 mole of SO₃. What is the equilibrium constant for the following reaction?

$$SO_3(g) + NO(g) \iff SO_2(g) + NO_2(g)$$

$$k_{g} = \frac{[SO_{2}][NO_{2}]}{[SO_{3}][NO]} = \frac{(0.03)(0.05)}{(0.1)(0.08)} = 0.1875$$

5. For the reaction:

$$H_2(g) + F_2(g) \leftrightarrow 2HF(g)$$
 $K = 3 \times 10^{-4}$

Find the equilibrium concentration of HF in a 1.00 L container if initially there were 0.200 moles of H_2 added to 0.200 moles of F_2 .

6. Initially the concentrations of N_2 and O_2 are 1.4 mol/L each and there is 0.1 mol/L of NO. If at equilibrium the [NO] is 2.0 mol/L, find K.

$$N_2(g) + O_2(g) \leftrightarrow 2 NO(g)$$
 $N_2^+ O_Z \longrightarrow 2 NO$
 $N_2(g) + O_2(g) \leftrightarrow 2 NO(g)$
 $N_2^+ O_Z \longrightarrow 2 NO$
 $N_2(g) + O_2(g) \leftrightarrow 2 NO(g)$
 $N_2^+ O_Z \longrightarrow 2 NO$
 $N_2^+ O_Z \longrightarrow 2 NO$
 $N_2^+ O_Z \longrightarrow 2 NO(g)$
 $N_2^+ O_Z \longrightarrow 2 NO(g)$

$$K_{eg} = \frac{[NO]^2}{[N_2][O_2]}$$
 $K_{eg} = \frac{(20)^2}{(0.45)(0.45)}$
 $K_{eg} = 19.75$