Unit: Algebra and \# Notes

Name \qquad Dates Taught \qquad

General Outcome			
10I.A.2	- Demonstrate an understanding of irrational numbers by representing, identifying, and simplifying irrational numbers and ordering irrational numbers.		
10I.A.2	- Express a radical as a mixed radical		
10I.A.2	- Express a mixed radical as an entire radical		
1OI.A.3	- Demonstrate an understanding of powers		
with integral and rational exponents			

Comments : \qquad

Outcome 10I.A.2: Number Systems and Approximating Irrationals

\qquad numbers, \qquad , are all \qquad .
ie. $\quad N=\{1,2,3, \ldots\}$
numbers, \qquad , are all positive integers and \qquad -
ie. $\quad W=\{0,1,2,3, \ldots\}$
\qquad
\qquad are whole numbers and their \qquad .
ie. $\quad I=\{\ldots,-2,-1,0,1,2, \ldots\}$
numbers, \qquad , are any numbers written in the form of a \qquad $\frac{a}{b}$, where $\mathrm{a} \& \mathrm{~b}$ are \qquad and b \qquad .
ie. $\quad\left\{\left.\frac{a}{b} \right\rvert\,, b \in I, b \neq 0\right\}$
numbers, \qquad , are any number that \qquad be written in the form $\frac{a}{b}$, where $a \& b$ are \qquad and b © 0 .
(1) $Q=$ Set of irrational numbers
\qquad numbers, \qquad , are the \qquad of the \qquad number set
and the \qquad number set.
ie. $R=Q \cup Q$

Reals

Word bank:	cannot irrational rational

fraction
irrational
real
integers
natural
union

integers	integers
opposites	positive
whole	zero

integers rational

Examples:

1. Which Number System bestrepresents the following numbers?
a) 2
b) 0.25
c) $\sqrt{35}$ \qquad d) -5
\qquad
e) π \qquad f) 0.131313 . \qquad
g) $\sqrt{25}$
h) 0 \qquad
i) 0.123456789 ...
j) $\frac{3}{4}$ \qquad
2. Write each number in decimal form (round to 2 decimal places). Some may already be written in decimal form.
a) 3
b) 0.41
c) $\sqrt{45}$ \qquad d) -3
e) π \qquad f) 0.171717 .
g) $\sqrt{16}$
h) 0 \qquad
i) 0.123456789 ..
j) $\frac{3}{4}$ \qquad

Place the above numbers on a horizontal number line (below). Clearly label the number line and use an appropriate scale.

Homework: MPC20S, Exercise 20

Outcome 10I.A.3: Integral Exponents

Note: a, b and x are rational and variable basis while m and n are integral exponents.

Law:	Example:
Converting Negative Powers $a^{-n}=\frac{1}{a^{n}}, a \neq 0$	$3^{-2}=\quad \text { or } \frac{1}{2^{-3}}=$
Product of Powers $\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}, a \neq 0$	$\left(6^{3}\right)\left(6^{2}\right)=$
Quotent of Powers $\left(a^{m}\right) /\left(a^{n}\right)=a^{m-n}, a \neq 0$	$\left(4^{3}\right) /\left(4^{-2}\right)=$
Power of a Power $\left(a^{m}\right)^{n}=a^{m n}$	$\left(7^{2}\right)^{3}=$
Power of a Product $(a b)^{m}=a^{m} b^{m}$	$(3 \cdot 2)^{3}=$
Power of a Quotient $(a / b)^{m}=a^{m} / b^{m}, b \neq 0$	$(3 / 2)^{4}=$
Zero Exponent $a^{0}=1, a \neq 0$	$(2 x)^{0}=\quad-(2 x)^{0}=$

Extra Examples:

Example:	Method 1	Method 2
a) $\left(5^{4}\right)\left(5^{-2}\right)=$	Add the Exponents	Use Positive Exponents
b) $\left(.3^{-2} / .3^{2}\right)=$	Subtract the Exponents	Use Positive Exponents
c) $\left[(4 x)^{-3}\right]^{2}=$		

Homework: Page 67-68, Q \#

Outcome 10I.A.3: Rational Exponents

Note: a, b and x, y are rational and variable basis while m and n are integral exponents.

Law:	Example
Product of Powers $\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}, a \neq 0$	$\left(2^{\frac{3}{5}}\right)\left(2^{\frac{4}{5}}\right)=$
Quotent of Powers $\left(a^{m}\right) /\left(a^{n}\right)=a^{m-n}, a \neq 0$	$\left(6^{\overline{3}}\right) /\left(6^{2}\right)=$
Power of a Power $\left(a^{m}\right)^{n}=a^{m n}$	$\left(2^{\frac{2}{3}}\right)^{3}=$
Power of a Product $(a b)^{m}=a^{m} b^{m}$	$\left(27 x^{\frac{1}{2}}\right)^{\frac{1}{3}}=$
Power of a Quotient $(a / b)^{m}=a^{m} / b^{m}, b \neq 0$	$\left(\frac{x^{2}}{y^{4}}\right)^{\frac{1}{2}}=$
Zero Exponent $a^{0}=1, a \neq 0$	$(5 x)^{0}=\quad-(5 x)^{0}=$

Note: A power with a rational exponent can be written with the exponent in decimal or fractional form. Eg. $3^{\frac{2}{4}}=3^{5}$.

Extra Examples:

Example:	Method 1	Method 2
a) $\left(4^{1.75} / 4^{5 / 4}\right)=$	Convert to Fractions	Convert to Decimals
b) $\left(4^{.75} / 4^{6 / 4}\right)^{3}=$	Subtract the Exponents	Apply Power of a Power

Homework: Page 72, Q \#

Outcome 10I.A.2\&3: Irrational Numbers and Radicals

Law:	Example(s):
$a^{\frac{1}{n}}=\sqrt[n]{a}, n \neq 0$	$3^{\frac{1}{4}}=$ Number expressed as a power
	or $\sqrt[3]{2}=$ Number expressed as a radical

In General:

$$
\sqrt[r]{x^{p}}=(\sqrt[r]{x})^{p}=x^{p / r}
$$

Extra Examples:

1. Express each power as an equivalent radical:
a) $24^{\frac{1}{2}}=$
b) $25^{\frac{3}{4}}=$
c) $\left(5 x^{4}\right)^{\frac{1}{3}}=$
2. Express each radical as a power with a rational exponent:
a) $\sqrt{5^{5}}=$
b) $\sqrt[4]{6^{3}}=$
c) $\sqrt[m]{9^{5}}=$

Homework: MPC20S - Ex. \#21, Page 76 Q \# 1,2

Outcome 10I.A.2: Operations on Radicals (Simplifying)

$>\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}$, etc. are in \qquad form.
$\Rightarrow \sqrt{12}$ is ___ because it contains a \qquad
\qquad (integer) factor.

$$
\Rightarrow \quad \sqrt{12}=\sqrt{4 \bullet 3}=\sqrt{4} \cdot \sqrt{3}=2 \cdot \sqrt{3}
$$

To simplify a radical (also known as writing as a mixed radical):

- Depending on the \qquad of the radical, look for a perfect \qquad (cube, etc.) hidden in the factors of the \qquad .
- \qquad the perfect square (cube, etc.) by placing its root in \qquad of the radical sign.
- \qquad any constants in front of the radicand.
- Leave any \qquad without integer roots \qquad the radicand.

Word bank: combine	factors	front	
inside	not		
remove	simplest	numbers square	radicand square

Examples:

1. Simplify (express as a mixed radical) each radical:
a) $\sqrt{8}=$
b) $\sqrt{75}=$
c) $\sqrt[3]{54}=$
2. Express each mixed radical as an entire radical:
a) $3.5 \sqrt{3}=$
b) $2 \sqrt[3]{5}=$
c) $-2 \sqrt[3]{4}=$
