Unit: Algebra and # Notes

Name _____

Dates Taught _____

_

General Outcome		
10I.A.2	 Demonstrate an understanding of irrational numbers by representing, identifying, and simplifying irrational numbers and ordering irrational numbers. 	
10I.A.2	 Express a radical as a mixed radical 	
10I.A.2	 Express a mixed radical as an entire radical 	
10I.A.3	 Demonstrate an understanding of powers with integral and rational exponents 	

Comments : _____

Outcome 10I.A.2: Number Systems and Approximating Irrationals _____numbers, _____, are all ______ $N = \{1, 2, 3, ...\}$ ie. ____ numbers, ____, are all positive integers and _____. $W = \{0, 1, 2, 3, ...\}$ ie. ____, ____, are whole numbers and their _____. I = {... -2, -1, 0, 1, 2, ... } ie. numbers, _____, are any numbers written in the form of a ______ $\frac{a}{b}$, where a & b are _____ and b _____. ie. $\left\{\frac{a}{b}|, b \in I, b \neq 0\right\}$ _____ numbers, _____, are any number that ______ be written in the form $\frac{a}{b}$, where a & b are _____ and b $\oplus \mathbf{0}$. $\mathbf{0}$ Q = Set of irrational numbers _____numbers, ____, are the _____ of the ______number set d the ______number set. ie. R = Q U Q and the Reals **Rationals** Integers Wholes Irrationals Naturals Word bank: fraction integers cannot integers integers integers

irrational

rational

irrational

real

natural

union

opposites

whole

positive

zero

rational

MIAP 205 - Notes

<u>Examples</u>:

1. Which Number System best represents the following numbers?

a) 2	b) 0.25
c) $\sqrt{35}$	d) -5
e) π	f) 0.131313
g) $\sqrt{25}$	h) 0
i) 0.123456789	j) 3

2. Write each number in decimal form (round to 2 decimal places). Some may already be written in decimal form.

a) 3	b) 0.41
c) $\sqrt{45}$	d) -3
e) π	f) 0.171717
g) $\sqrt{16}$	h) 0
i) 0.123456789	j) ³ / ₄

Place the above numbers on a horizontal number line (below). Clearly label the number line and use an appropriate scale.

Homework: MPC205, Exercise 20

Outcome 10I.A.3: Integral Exponents

Note: *a,b* and *x* are rational and <u>variable</u> basis while *m* and *n* are integral <u>exponents</u>.

Law:	Example:
Converting Negative Powers $a^{-n} = \frac{1}{a^n}, a \neq 0$	$3^{-2} = or \frac{1}{2^{-3}} =$
Product of Powers $(a^m)(a^n) = a^{m+n}, a \neq 0$	$(6^3)(6^2) =$
Quotent of Powers $(a^m)/(a^n) = a^{m-n}, a \neq 0$	$(4^3)/(4^{-2}) =$
Power of a Power $(a^m)^n = a^{mn}$	$(7^2)^3 =$
Power of a Product $(ab)^m = a^m b^m$	$(3 \bullet 2)^3 =$
Power of a Quotient $(a/b)^m = a^m/b^m, b \neq 0$	$(3/2)^4 =$
Zero Exponent $a^0 = 1, a \neq 0$	$(2x)^0 = -(2x)^0 =$

Extra Examples:

Example:	Method 1	Method 2
a) $(5^4)(5^{-2}) =$	Add the Exponents	Use Positive Exponents
b) $(.3^{-2}/.3^{2}) =$	Subtract the Exponents	Use Positive Exponents
c) $[(4x)^{-3}]^2 =$	Multiply the exponents	Use Positive Exponents

Homework: Page 67-68, Q

Outcome 101.A.3: Rational Exponents

Note: *a,b* and *x,y* are rational and <u>variable</u> basis while *m* and *n* are integral <u>exponents</u>.

Law:	Example
Product of Powers	$\frac{3}{5}$, $\frac{4}{5}$
	$(2^{5})(2^{5}) =$
$(a^m)(a^n) = a^{m+n}, a \neq 0$	
	1
Quotent of Powers	$\left(\frac{1}{63}\right)/(6^2) =$
$\binom{m}{n}$	$(0^{\circ})/(0^{\circ}) =$
$(a)/(a) = a$, $a \neq 0$	
Power of a Power	2
	$(2^{\overline{3}})^3 =$
$(a^m)^n = a^{mn}$	
Power of a Product	$\frac{1}{2}$
	$(27x^2)^3 =$
$(ab)^m = a^m b^m$	
Power of a Quotient	$\left \begin{array}{c} x^2 \\ x^2 \end{array} \right ^{\frac{1}{2}}$
$(1)mm'1m1 \cdot 0$	$\left(\frac{1}{v^4}\right)^2 =$
$(a/b)^{*} = a^{*}/b^{*}, b \neq 0$	
Zano Exponent	
	$(5x)^{\circ} = -(5x)^{\circ} =$
$a^{0} = 1 a \neq 0$	
<i>a</i> 1, <i>a</i> / 0	

Note: A power with a rational exponent can be written with the exponent in decimal or fractional form. Eq. $3^{\frac{2}{4}} = 3^{.5}$.

<u>Extra Examples:</u>

Example:	Method 1	Method 2
$(4^{1.75}/4^{5/4}) =$	Convert to Fractions	Convert to Decimals
$(1.75/10^{6/4})^3 -$	Subtract the Exponents	Apply Power of a Power
ы (+ /+) —		
1	1	$(2\pi)^{-7}$
$(5^{\frac{1}{3}})(5^4) -$	$(8r^7)^{\frac{1}{3}}$ -	(25/16) =

Homework: Page 72, Q

Outcome 101.A.2&3: Irrational Numbers and Radicals

Law:	Example(s):
$a^{\frac{1}{n}} = \sqrt[n]{a}, n \neq 0$	$3^{\frac{1}{4}} = Number expressed as a power$
	$or\sqrt[3]{2} = Number expressed as a radical$

In General:

$$\sqrt[p]{x^p} = \left(\sqrt[p]{x}\right)^p = x^{p/r}$$

Extra Examples:

1. Express each power as an equivalent radical:

a)
$$24^{\frac{1}{2}} =$$
 b) $25^{\frac{3}{4}} =$ c) $(5x^4)^{\frac{1}{3}} =$

- 2. Express each radical as a power with a rational exponent:
- a) $\sqrt{5^5} =$ b) $\sqrt[4]{6^3} =$ c) $\sqrt[m]{9^5} =$

Homework: MPC205 - Ex. #21, Page 76 Q # 1,2

Outcome 10I.A.2: Operations on Radicals (Simplifying)

$$\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \text{ etc. are in } \text{form.}$$

$$\sqrt{12} \text{ is } \text{because it contains a} \text{(integer) factor.}$$

$$\Rightarrow \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \cdot \sqrt{3}$$

To simplify a radical (also known as writing as a mixed radical):

- Depending on the ______ of the radical, look for a perfect ______ (cube, etc.) hidden in the factors of the ______.
- • the radical sign.
- ______ any constants in *front* of the radicand.
 Leave any ______ without *integer* roots ______ the radicand.

Word bank:	combine	factors	front
inside	not	numbers	radicand
remove	simplest	square	square

Examples:

1. Simplify (express as a mixed radical) each radical:

a)
$$\sqrt{8} =$$
 b) $\sqrt{75} =$ c) $\sqrt[3]{54} =$

2. Express each mixed radical as an entire radical:

a)
$$3.5\sqrt{3} =$$
 b) $2\sqrt[3]{5} =$ c) $-2\sqrt[3]{4} =$

Homework: MPC205 - Ex #33, Page76, Q