CHE30S Name \qquad
Quiz
Date \qquad
Pressure, Temperature and Volume of Gases

1. Complete the following sentence: If the pressure of a gas is kept constant, when the temperature of the gas increases, the volume of the gas _increases_.
/1
2. Describe the concept of absolute zero.
/2 It is at 0 K or $-273^{\circ} \mathrm{C}$ and it is the coldest temperature possible where a gas has no volume and no pressure.
3. A sample of gas is kept at a constant volume. Determine the pressure of the gas at $32{ }^{\circ} \mathrm{C}$ if the pressure at $2^{\circ} \mathrm{C}$ is 105 kPa .

$$
/ 32+273=275 \mathrm{~K}=\mathrm{T} 1 \quad 32+273=305 \mathrm{~K}=\mathrm{T} 2
$$

Gay - Lussac's Law
$\frac{\mathrm{P} 1}{\mathrm{~T} 1}=\frac{\mathrm{P} 2}{\mathrm{~T} 2}$
$\underline{105 \mathrm{kPa}}=\underline{\mathbf{P 2}}$
275305
$\underline{(105)(305)}=\mathbf{P} 2$
275
$\mathbf{P} 2=116.45 \mathbf{k P a}$
4. Salvage divers use lift bags containing air to bring objects to the surface of the water. A lift bag contains 145 L of air at the bottom of a lake where the temperature is 278 K and the pressure is 6.00 atm . The bag will burst if the volume of the air exceeds 750 L . Determine if the bag will burst if it is brought to the surface where the temperature is 289 K and the pressure is 1.00 atm .

/4

$\underline{\mathbf{P}}_{1} \underline{\mathbf{V}}_{1}=\underline{\mathbf{P}}_{2} \underline{\mathbf{V}_{2}}$
$\mathrm{T}_{1} \quad \mathrm{~T}_{2}$
$V_{2}=\underset{\mathbf{P}_{1}}{\mathbf{T}_{1}} \underline{\mathrm{P}}_{\mathbf{1}} \underline{\mathrm{T}}_{2}$
$\mathrm{V} 2=\underline{(6)(145)(289)}$
(278)(1)
$\mathrm{V} 2=904.4 \mathrm{~L}$

Therefore it will burst.

5. Write a one sentence summary for each of the three gas laws we have discussed this unit. (Boyle's, Charles, and Gay-Lussac)
/3
Boyles - Pressure and volume are inversely related
Charles - Volume and Temperature are directly related Gay-Lussac - Pressure and temperature are directly related
6. If a balloon is filled to a pressure of 1 atm ; what is the balloons pressure in mmHg ?
/1
$1 \mathrm{~atm} \times \underline{760 \mathrm{mmHg}}=\mathbf{7 6 0} \mathbf{~ m m H g}$
1 atm
/3

$14.9 \mathrm{psi} \times \underline{(760 \mathrm{mmHg})}=\mathbf{7 7 0 . 3} \mathbf{~ m m H g}$ (14.7 psi)

$20^{\circ} \mathrm{C}+273=293 \mathrm{~K}$
$\underline{\mathrm{P} 1}=\underline{\mathrm{P} 2}$
T1 T2

$745 \mathrm{mmHg}=770.3 \mathrm{mmHg}$ 293
 T2

$\underline{(770.3)(293)}=T 2$

745
T2 $=302.95 \mathrm{~K}$ or $29.95{ }^{\circ} \mathrm{C}$
7. A bike tire's pressure is supposed to be 14.9 psi , you measure the tire and your gauge reads 745 mmHg at $20^{\circ} \mathrm{C}$, what do you need to heat the tire to to get the correct pressure?

