## Review Booklet <br> Atomic Theory

- Understand frequency, wavelength, and energy.
- Electromagnetic spectrum
- ROY G BIV
- Write electron configurations.
- $s^{2}, p^{6}, d^{10}, f^{14}$
- Understand periodic trends including atomic radii, ionic radii, ionization energy (first, second, third), and electronegativity.

1. When an electron in an atom gains energy, the electron
a) moves to higher energy levels
c) is gained by the neutral
b) falls to lower energy levels
atom
d) is shared in covalent bonds
2. Which of the following has the largest atomic radius?
a) Li
b) Na
c) Mg d) Al
e) F
3. How many " d " electrons in total are there in an atom of Rb ?
a) 0
b) 1
c) 6
d) 10
e) 37
4. For each configuration of electrons give the neutral element that corresponds with it.
$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{7}$

5. Write full electron configurations for....
$\mathrm{Na} 1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} \cdot 4$
$\mathrm{S} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
Copper $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$
$\mathrm{Fe}^{3+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$

## Review Booklet - Kinetics

- Factors affecting reaction rates.
- Rate stoichiometry.
- Understand the collision theory including activation complex and activation energy.
- Writing rate laws.
- Calculate rate constants.
- Determine orders of reactions.
- Read and draw potential energy diagrams.
- Interpret reaction mechanisms and rate determining steps.


## Equations to know:

```
Average Rate = |[]/\Deltat
General Rate law - Rate =k[A\mp@subsup{]}{}{x}[B\mp@subsup{]}{}{\textrm{y}}[\textrm{C}\mp@subsup{]}{}{2}
```

6. Define each of the following terms (in 2 sentences or less each)
a) activation energy - the energy required for reactant molecules to be converted to products.
b) activated complex- a molecular structure at the top of the
c) catalyst P.E. graph
d) effective collision - $A_{A}$ collision of molecules that results in a successful bonding.
e) reaction mechanism - A sequence of reactions by which ar
overall reaction may occur.
7. For a reaction $\Delta \mathrm{H}=-60 \mathrm{kcal}, \mathrm{E}_{\mathrm{a}}($ forward $)=30 \mathrm{kcal}$ and P.E. $($ reactants $)=0$ kcal.
(a) Draw the potential energy curve for the reaction. Be sure to label the axes.
(b) Calculate $\mathrm{E}_{\mathrm{a}}$ (reverse) and P.E. (products)
(c) Label the parts of the curve representing (1) the reactants, (2) the products, (3) the activation energy of the forward reaction, (4) the activated complex and (5) $\Delta \mathrm{H}$
b) $E_{A}($ reverse $)=90 \mathrm{kcal}$ P.E. (products $)=60 \mathrm{kcal}$

8) When a catalyst is added to a reaction

| I. | the heat of reaction increases |
| ---: | :--- |
| II. | a new mechanism is provided |
| III. | the equilibrium constant increases |

A.) II and I only
B. II only
C.) I and II only
D.) I, II and III
9.) Consider this reaction mechanism. The catalyst is

| Step 1 | $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HClO}+\mathrm{OH}^{-}$ |
| :--- | :---: |
| Step 2 | $\mathrm{I}^{-}+\mathrm{HClO} \rightarrow \mathrm{HIO}+\mathrm{Cl}^{-}$ |
| Step 3 | $\mathrm{HIO}+\mathrm{OH}^{-} \rightarrow \mathrm{IO}^{-}+\mathrm{H}_{2} \mathrm{O}$ |

A.) $\mathrm{IO}^{-}$
B.) ClOH
C.) $\mathrm{ClO}^{-}$
D.) $\mathrm{H}_{2} \mathrm{O}$
10.) A substance that increases the rate of a chemical reaction and may be recovered unchanged at the end of the reaction is $a(n)$
A.) product.
B.) catalyst.
C.) activated complex.
D.) reaction intermediate.
11.) Which of the following changes will increase the average kinetic energy of reactant molecules?
A.) increasing the surface area
B.) adding a catalyst
(C.) ncreasing the temperature
D.) increasing the concentration
12.) Which of the following is true for an activated complex?
A.) unstable and has low PE
B. unstable and has high PE
C.) stable and has high PE
13.) Increasing the temperature of a reaction increases the reaction rate by

| I. | increasing frequency of collisions |
| ---: | :--- |
| II. | increasing the kinetic energy of collision |
| III. | decreasing the potential energy of collision |

A.) I only.
B.) I and II only.
C.) II and III only.
D.) I, II and III.
14.) Which of the changes occur when the temperature of a reaction is increased?

| $K$ | $\Delta \mathrm{H}$ of the reaction increases |
| ---: | :--- |
| II. | Frequency of the collisions increases |
| III. | Kinetic energy of the reactants increases |

A.) I, II, and III.
B. II and III only.
C.) I and III only.
D.) I and II only.
15.) Consider the following mechanism for a reaction:

Which of the following statements is correct?

| Step 1 | $\mathrm{HBr}+\mathrm{O}_{2} \rightarrow \mathrm{HOOBr}$ |
| :--- | :---: |
| Step 2 | $\mathrm{HBr}+\mathrm{HOOBr} \rightarrow 2 \mathrm{HOBr}$ |
| Step 3 | $2 \mathrm{HBr}+2 \mathrm{HOBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Br}_{2}$ |

A.) HOBr is a catalyst.
B.) $\mathrm{Br}_{2}$ is a reactant.
C. HOOBr is a reaction intermediate.
D.) HBr is a product.
16.) A catalyst changes the rate of a reaction by
A.) decreasing the energy of the products.
B.) increasing the temperature.

- changing th.
D.) providing an alternate reaction mechanism.
(you just need to know that it decreases the $E_{A}$ on the
E diagram. Which of the following describes the forward reaction?
17.) Consider this PE diagram. Which of th
\{data $\mathrm{H}(\mathrm{kJ})$; Activation Energy $(\mathrm{kJ})$ \}

(A.) $-50 ; 150$
B.) $-50 ; 200$
C.) $+50 ; 150$
D.) $+50 ; 250$

One more Kinetics Question......
Consider the all gas-phase reaction at $800^{\circ} \mathrm{C}: \quad \mathrm{CO}+\mathrm{H}_{2}==2 \mathrm{H}_{2} \mathrm{CO}$
The following kinetic data was collected:

| Exp't \# | $[\mathrm{CO}] \mathrm{mol} / \mathrm{L}$ | $\left[\mathrm{H}_{2}\right] \mathrm{mol} / \mathrm{L}$ | Initial Rate of Rn <br> $(\mathrm{mol} / \mathrm{L}) / \mathrm{s}$ |
| :--- | :--- | :--- | :--- |
| 1 | 0.001 | 0.004 | 0.002 |
| 2 | 0.002 | 0.004 | $0.008 \times 4$ |
| 3 | 0.003 | 0.004 | 0.018 |
| 4 | 0.004 | 0.001 | 0.008 |
| 5 | 0.004 | 0.002 | $0.0162 \times 2$ |
| 6 | 0.004 | 0.003 | 0.024 |

a) What is the rate law expression for this reaction? Also calculate k.

$$
\text { Rate }=K\left[\operatorname{col}^{2}\left[\mathrm{H}_{2}\right]\right.
$$

$$
\text { Rate }=K[C O]^{2}\left[H_{2}\right]
$$

$$
(0.002)=k(0.001)^{2}(0.004)
$$

$\frac{0.002 m}{(0.001 m)^{2}(0.004 m)}=k$

$$
k=5.0 \times 10^{5} \mathrm{~m}
$$

Review Booklet - Equilibrium

- Conditions of equilibrium.
- Writing equilibrium expressions.
- Calculating concentrations using ICE boxes.
- Calculating Keq using ICE boxes.
- Applying Le Chatelier's Principle and predicting the effects of a stress.

Equations to know:
Keq = [products]/[reactants] - raised to the power of their exponents
Given:
Solubility Table

1. Write the $\mathrm{K}_{\mathrm{eq}}$ expression for each of the following equilibrium systems:
a) $\mathrm{SrCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{eq}}=\left[\mathrm{CO}_{2}\right]$
b) $2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \Leftrightarrow \mathrm{Cu}_{2} \mathrm{CO}_{3}($ s $)$
c) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{HF}(\mathrm{g})+\mathrm{O}(\mathrm{g})$


$$
k_{o q}=\frac{[0][H F]^{2}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}
$$

2. At 900 kelvin, consider the all gas-phase reaction

$$
2 \mathrm{~A}+\mathrm{B} \Leftrightarrow 3 \mathrm{C}+\mathrm{D}
$$

Initially, 0.60 M A and 0.60 M B are mixed together. (No C or D is present). When equilibrium is eventually reached, the equilibrium concentration of $D$ is found to be 0.10 M. Calculate $\mathrm{K}_{\mathrm{eq}}$.

3. At $1200{ }^{\circ} \mathrm{C}$, consider the all gas-phase exothermic reaction sitting at equilibrium in a five litre flask:
$\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CO}_{2}+4 \mathrm{H}_{2}$
Now. let us disturb the equilbrium. Answer each question with either "increase", "decrease" or "not change".

DISTURBANCE
e.g add a catalyst
(i) add some $\mathrm{CH}_{4}$
(ii) remove some $\mathrm{CO}_{2}$
(iii) remove some $\mathrm{H}_{2} \mathrm{O}$
(iv) raise the temperature to $1600^{\circ} \mathrm{C}$
(v) transfer the mixture to a $\mathbf{2 2} \mathbf{L}$ flask

The concentration of $\mathrm{H}_{2}$ will ...
not change
increase

4. A student places 6 moles of hydrogen gas and 6 moles of iodine gas into a 1 L flask and the system is allowed to go to equilibrium at $100^{\circ} \mathrm{C}$. If $\mathrm{K}_{\text {eq }}$ is 52 , what is the equilibrium concentration of the gaseous product?

## Solubility Review Booklet

- Write Tsp equations.
- Calculate Kp
- Calculate solubility in $\mathrm{mol} / \mathrm{L}$
- Calculate solubility in $\mathrm{g} / \mathrm{L}$
- Precipitates

1. At $20^{\circ} \mathrm{C}$, the solubility of potassium chlorate in water is $7.4 \mathrm{~g} \mathrm{KClO}_{3} / 100 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$. How many grams of $\mathrm{KClO}_{3}$ must be dissolved in 0.5 kg of $\mathrm{H}_{2} \mathrm{O}$ to make a saturated solution at $20{ }^{\circ} \mathrm{C}$ ?
A. 3.7
B. 0.3
C. 14.8
D. 37.0
E. 1.5
2. At $27^{\circ} \mathrm{C}, \mathrm{Ksp}(\mathrm{AgCl})=1.9 \times 10^{-10}$. What is the molar concentration of $\mathrm{Ag}+(\mathrm{aq})$ in a one litre saturated water solution of silver chloride at this temperature?
A. $0.44 \times 10^{-5}$
B. $0.95 \times 10^{-5}$
C. $1.38 \times 10^{-5}$
D. $0.95 \times 10^{-10}$
E. $3.81 \times 10^{-10}$
3. The $\mathrm{K}_{\text {sp }}$ for CdS is $3.6 \times 10^{-29}$ at $18{ }^{\circ} \mathrm{C}$. The concentration of cadmium ion in a saturated solution of CdS at this temperature, in moles per liter, is
A. $3.6 \times 10^{-29}$
B. $1.4 \times 10^{-5}$
C. $1.4 \times 10^{-6} \sqrt{3.6 \times 10^{-29}}=\sqrt{x^{2}}$
D. $6.0 \times 10^{-15}$
E. $6.0 \times 10^{-14}$
$6.0 \times 10^{-15}=x$
4. The solubility of $\mathrm{PbF}_{2}$ is $0.49 \mathrm{~g} / \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}$ at $18{ }^{\circ} \mathrm{C}$. What is the $\mathrm{K}_{\text {sp }}$ for lead fluoride at this temperature? $0.002 \mathrm{Mol} / \mathrm{L} \quad 1!\mathrm{i}: 2$ rate
A. 0.002
B. $4.0 \times 10^{-6}$
C. $8.0 \times 10^{-6}$
D. $7.4 \times 10^{-7}$ E. $3.2 \times 10^{-8}$
$=4(0.002)^{3}$
$=3.2 \times 10^{-8}$
5. A saturated solution of barium sulfate at $28{ }^{\circ} \mathrm{C}$ contains $3.9 \times 10^{-5} \mathrm{M} \mathrm{Ba}^{2+}$ ions.

What is $\mathrm{K}_{\text {sp }}$ of this salt at this temperature? $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{BaSO}_{\text {e }} \quad 1:$ l rate o
A. $3.9 \times 10^{-5}$
B. $3.9 \times 10^{-6}$

$$
\begin{aligned}
K_{s p} & =\left[B^{2+}\right]\left[S O_{4}^{2}\right] \\
& =x \cdot x \\
& =\left(3.9 \times 10^{-5}\right)^{2} \\
& =1.52 \times 10^{-9}
\end{aligned}
$$

C. $2.1 \times 10^{-7}$
D. $1.5 \times 10^{-8}$
E. $1.5 \times 10^{-9}$
7. Given the reaction below:
a. Complete and balance the following reactions.
b. Indicate which products are soluble and which will form a precipitate.
c. Write the Kip equation for the precipitate.
d. Calculate solubility given the literature value of Ksp at $25^{\circ} \mathrm{C}$.

$$
2 \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{FeCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{\mathrm{D}}\right)
$$



## Redox Review Booklet

- Know how to calculate and manipulate oxidation numbers
- OIL RIG
- Oxidizing and reducing agents
- Balancing half and full reactions
- In acidic conditions only
- Calculate Reduction Potential
- Know how to understand a Galvanic cell and understand which is the cathode and anode.
1.) Manganese has an oxidation number of +4 in
A.) $\mathrm{Mn}_{2} \mathrm{O}_{7}$
B.) $\mathrm{MnO}_{2}$
C.) MnO
D.) $\mathrm{Mn}_{2} \mathrm{O}_{3}$
2.) Chlorine has an oxidation number of +5 in
A.) $\mathrm{NaClO}_{2}$
B.) $\mathrm{NaClO}_{4}$
C.) NaClO
D.) $\mathrm{NaClO}_{3}$
3.) Which of the following represents a redox reaction?
A.) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B.) $\mathrm{SiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Si}+2 \mathrm{MgCl}_{2}$
C.) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
D.) $\mathrm{AgBr}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}+\mathrm{Br}$
4.) Which of the following will reduce $\mathrm{Fe}^{2+}$ ?
A.) $\mathrm{Zn}_{(\mathrm{s})}$
B.) $\mathrm{Br}_{2(\mathrm{~s})}$
C.) $\mathrm{I}_{2(\mathrm{~s})}$
D.) $\mathrm{Ni}_{(\mathrm{s})}$
5.) In a reaction, the oxidation number of Cr decreases by 3 . This indicates that Cr is
A.) neutralized.
B.) oxidized.
C. reduced.
D.) a reducing agent.
6.) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}-->6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

The substance undergoing reduction is
(A.) $\mathrm{O}_{2}$
B.) $\mathrm{CO}_{2}$
C.) $\mathrm{H}_{2} \mathrm{O}$
D.) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
7.) A substance that is reduced during a redox reaction
A.) is the reducing agent.
B.) is the oxidizing agent.
C.) is the anode.
D.) loses mass.
8.) Which of the following is not a redox reaction?
A.) $\mathrm{CuS}+2 \mathrm{O}_{2}+\mathrm{C}-->\mathrm{Cu}+\mathrm{SO}_{2}+\mathrm{CO}_{2}$
B.) $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}-->\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C.) $2 \mathrm{Mg}+\mathrm{O}_{2}-->2 \mathrm{MgO}$
D.) $4 \mathrm{Ag}+2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2}-->2 \mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
9. Which of the following statements is INCORRECT ?
A. oxidation is the loss of electrons
B. reduction is the gain of electrons
C. when an element is reduced, its oxidation number decreases
D. when an element acts as a reducing agent, it loses electrons

## Acids \& Bases

- Definitions of acids and bases.
- Bronsted-Lowry and conjugate acid base pairs.
- Dissociation of acids and bases.
- Kw
- Using $\mathrm{Ka} \& \mathrm{~Kb}$ to determine acid and base strength.
- Writing $\mathrm{Ka} \& \mathrm{~Kb}$ expressions.
- Calculate Ka and Kb given ICE box.
- Calculate equilibrium concentrations from ICE box..
- Calculate [[H+], [H3O+], $\mathrm{pH}, \mathrm{pOH},[\mathrm{OH}-\}$ and $\%$ dissociation.
- Neutralization and titration.


## Equations to know:

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$[\mathrm{H} 3 \mathrm{O}+]=10^{-\mathrm{pH}}$
$[\mathrm{OH}-]=10^{-\mathrm{pOH}}$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\%$ dissociation $=\Delta \mathrm{HA} /[\mathrm{HA}]_{\mathrm{I}}$
M = moles $/ \mathrm{L}$
[]$_{A} \forall_{A}=[]_{B} \forall_{B}$

## Given:

$\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
A list of common acids and bases and their relative Ka's.

1. If the pH of a grapefruit is 3.3 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],[\mathrm{OH}-]$, and pOH ?

2. What is the pH and $[\mathrm{H}+]$ of a 0.0020 M NaOH solution?

$$
\begin{aligned}
& {[\mathrm{OH}]=0.002} \\
& {\left[\mathrm{ld}^{+}\right]=5.0 \times 10^{-12}}
\end{aligned}
$$

$$
p^{H}=11.3
$$

3. Calculate the pH of a 0.1 M HCl solution given $\mathrm{Ka}=1.6 \times 10^{-5}$ -

4. The pH of a solution of HCl is 2.1 . Calculate the Ka .

$$
k_{a}=6.24 \times 10^{-5}
$$

5. How many moles of NaOH are needed to neutralize 2 mol HCl ?

$$
2 \mathrm{~mol}
$$

6. If 45 ml of 0.64 M HCl is needed to neutralize 60.0 ml of KOH . Calculate the concentration of KOH .

$$
0.48 m
$$

7. A volume of 145 ml of 0.6 M HCl neutralizes a 100 ml sample of $\mathrm{Ca}(\mathrm{OH})_{2}$ solution. What is the concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$ ?

$$
0.435 \mathrm{~m}
$$

