A system of equations is a \qquad of two or more \qquad with a same set of
\qquad .

Any order pair (x, y) that \qquad both equations in a system of equations is a
\qquad of the system.

Review:

Linear System of Equations	Solutions:
$x-y=-1$	
$x+y=3$	

Linear-Quadratic System of Equations - the equation of a \qquad function and the equation of a \qquad function.

- a graph of the system involves a \qquad and a \qquad -

Quadratic-Quadratic System of Equations - the equations of \qquad quadratic functions.

- a graph involves two \qquad .

SOLVING BY GRAPHING

Example: Solve $\left\{\begin{array}{l}y=x^{2} \\ y=x+2\end{array}\right.$

Example 2: Solve $\left\{\begin{array}{l}y=x^{2}-6 x+6 \\ y=-(x-5)^{2}+7\end{array}\right.$

Note:

- A system of linear-quadratic or quadratic-quadratic equations may have no real solution, one real or two real solutions.
- A quadratic-quadratic system of equations may also have an infinite number of real solutions.

No Solution	One Solution	Two Solutions	Infinite Solutions

SOLVING ALGEBRAICALLY

LINEAR-QUADRATIC SYSTEM OF EQUATIONS

Example 3: Solve the following system of equations algebraically. Verify your solution.

$$
\left\{\begin{array}{l}
5 x-y=10 \\
x^{2}+x-2 y=0
\end{array}\right.
$$

Method: Substitution

1) Solve the linear equation for a variable:

- Since the quadratic term is x, solve for y.

2) Substitute into the quadratic equation:

- Where you find y substitute with

3) Simplify the equation
4) Solve the equation.
5) Substitute these values of x into the original linear equation to determine the corresponding values of y.
6) Verify your solutions in both equations.

Example 4: Solve the following system of equations algebraically. Verify the solution. $\{3 x+y=-9$
$4 x^{2}-x+y=-9$

QUADRATIC-QUADRATIC SYSTEM OF EQUATIONS

Example 5: Solve the following system of equations. Verify your solutions.
$\left\{\begin{array}{l}3 x^{2}-x-y-2=0 \\ 6 x^{2}+4 x-y=4\end{array}\right.$

Method: Substitution

1) Solve each quadratic equation for a variable:

- Since the quadratic term is x, solve for y.

2) Since both equations are equal to y, both equations are equal to each other. $y=y$
3) Simplify the equation
4) Solve the equation.
\qquad
5) Substitute these values of x into one of original quadratic equations to determine the corresponding values of y.
6) Verify your solutions in both equations.

Example 6: Solve the following system of equations. Verify your solutions.

$$
\left\{\begin{array}{l}
6 x^{2}-x-y=-1 \\
4 x^{2}-4 x-y=-6
\end{array}\right.
$$

Example 7: Solve the following system of equations. Verify your solutions.
$\left\{\begin{array}{l}x^{2}+x=6+3 y \\ x^{2}-4=4 y-x\end{array}\right.$

Method: Elimination

1) Align the terms with the same degree.
2) Since the quadratic term is in the variable x, eliminate the y-terms.

- Multiply each equation by a number so that the y-terms are equal.

3) Subtract one equation from the other, eliminating the y-terms.
4) Solve the remaining equation.
\qquad
5) Substitute these values of x into one of original quadratic equations to determine the corresponding values of y.
6) Verify your solutions in both equations.

Example 8: Solve the following system of equations. Verify your solutions.

$$
\left\{\begin{array}{l}
4 x^{2}+x+2-2 y=0 \\
3 x^{2}+x=3 y-4
\end{array}\right.
$$

