

Polynomials

Mrs. Kornelsen

The definitions and examples below, show and explain most of the terminology you will be using in the **algebra** section.

1. <u>Constant</u> - A constant is a number that always has the same value. One example is the number 8. In $2x^2 + 9$, the 9 is the constant. Other examples are:

3, $\frac{1}{5}$, 3.5, -4, 10, x + 9, 2x + 6

2. <u>Variables</u> - A variable is a letter or letters that may be replaced (substituted) by numbers. Examples are:

a, x, x^2 , y^3 , m^2n^3 , $\underline{x} + \underline{z}$, $3\underline{x}$

3. <u>Expressions</u> - Expressions are formed by combining constants, variables or both by adding, subtracting, multiplying or dividing. Examples are:

ax + 3b, 5y, 2a - 7, x^2 + 2x - 1, $\frac{3}{4}x^2y^6$

4. <u>Terms</u> - A term is each part of an expression separated by a plus or a minus sign. Examples are:

 $ax^2 + 5xy - 7x + 3 \leftarrow$ (This expression has 4 terms.) $2x - 9 \leftarrow$ (This expression has only 2 terms.)

5. Factors - Factors are numbers or variables forming a product. Examples are:

ab \leftarrow (The factors are a and b.) $3x^2y \leftarrow$ (The factors are 3, x, x and y.)

6. <u>Coefficients (Numerical)</u> - Numerical coefficients are numbers associated with a product. The examples are underlined below.

 $(32)(a), -34 x^2, 3.4 m^3 z^2$

7. <u>Literal Coefficients</u> - Literal coefficients are the variables (letters) associated with a product. The examples are underlined below.

 $(32)(\underline{a}), -34 \underline{x}^2, 3.4 \underline{m}^3 \underline{z}^2$

ŧ

- Polynomials A polynomial is a monomial or the algebraic sum or difference of monomials. (See definitions below.)
 - a) monomial a monomial can consist of any or all of the following:
 - 1. any integer such as: 4, -3, 27, -198
 - 2. any variable with a positive integral power such as: y, a^2 , m^5 , -a, -e
 - 3. the product of integers and a variables such as: 2x, $3a^2$, $-3x^2y^3$, $(-5y)(2x^4)$
 - b) **binomial** a binomial is the sum or difference of exactly 2 monomials as shown below:

 $a + b^2$, $3x^2 - 5y^2$, 7x - 2y, 3x + 7

c) trinomial - a trinomial is the sum or difference of exactly 3 monomials as shown below:

 $ax^{2} + bx + c$, a - b + c, 4m + 7n - 18, 2x - 3y + 7x

d) We do not have special names for polynomials with 4, 5, 6, etc. terms. They are just called polynomials.

 Degree of Polynomials - The largest exponent in a polynomial or the greatest sum of the exponents in any single term of a polynomial gives us the degree of a polynomial as the examples illustrate below.

> 0 degree polynomials - 4, -5, $8x^0$ 1st degree polynomials - 3x, -6m, 2y, 3x + 5, $8n^1 - 7$ 2nd degree polynomials - $8x^2$, $5y^2$, $9a^1b^1$, 13xy, $4x^2 + 9x - 3$ 3rd degree polynomials - $6x^3$, $-5x^2y$, $2a^1b^1c^1$, 5xyz, $4x^3 + 3x^2 + 8$, $3ab^2 + 9ab$ 4th degree polynomials - $3x^4$, $-4a^2b^2$, $-7a^4 + 9x^2 - 8y$, 9abcd

 Standard Form of Polynomials (Descending Order) - Descending order of polynomials or the standard form of polynomials is when we write the polynomial from its highest to its lowest degree as the examples illustrate.

a)
$$-3x^3 + 8x^4 - 3x - 2x^2 - 7 = 8x^4 - 3x^3 - 2x^2 - 3x - 7$$

b)
$$3x + 2x^4 - 7x^5 + 9 = -7x^5 + 2x^4 + 3x + 9$$

- c) 7b + 3a + 5c 8x = 3a + 7b + 5c 8x ← (In the event all variables have the same exponent or degree, we write the terms in alphabetical order.)
- 11. <u>Ascending Order of Polynomials</u> Ascending order of polynomials is when we write the polynomial from its lowest to its highest degree as the examples illustrate. (Note that this is not used very often.)

a)
$$5x^3 - 7x^5 + 3x^2 - 2 = -2 + 3x^2 + 5x^3 - 7x^5$$

b)
$$3a^2 + 7x - 8x^5 + 9x^3 = 7x + 3a^2 + 9x^3 - 8x^5$$

Lesson One: Polynomial Definitions

Example 1:

For each expression, identify the number of terms and whether it is a monomial, binomial, trinomial or polynomial

a)
$$4xy + 3$$
 b) $7a^2 - 2ab + b^2$

c)
$$5x^2 + y^2 + z^2 - x - 6$$
 d) 13

Example 2:

What is the number of terms and the degree of each polynomial?

- a) $4x^2 + 3$ b) $7a^2 2ab + b^2$
- c) 5x + z 6 d) 7

Ordering Polynomials

Ascending order:

Descending order:

Example 3:

Order the following polynomials in ascending order of x

a)
$$x^4y + 4xy^3 - 2x^3y + 5y - 3$$

b)
$$xy^3 + x^4y^2 - x^6$$

Example 4:

Order the following polynomials in descending order of y

a)
$$xy^3 + 4x^2y - 5x^4y^7 + 10x$$

b)
$$2y^8 - 3x^2y^3 + 4x^2y^4 - 3x$$

Lesson 1

A. How many terms are in each of the following expressions?

1.	2x + 3y	2.	a + b - c
3.	3x ²	4.	(5x)(2y)
5.	$3x^2 + 7x + 5$	6.	$-8x^3 + 5x^2 - 3x + 4$
7.	$(3x)(-2x^2)$	8.	$(6x^2) \div 2$

B. Circle the constant(s) in each of the expressions below.

1. $3x + 4$	2. 5x + 3y
3. $8x^2 - 8$	4. 5a - 3b + 2c + 9
5. $16x^2 - 5 + 3x$	6. $7x^2 - 3x + 4$
7. x - 1.6	8. 5 + 2x - $3x^2$

C. Circle the variable(s) in each of the expressions below .

1. 3a + 5b - 6	2. $5x + 15$
3. $3x^2 - 4y^2 + 2z^2$	4. $a^2 + bc - 4c^2$
5. $x^2y^2 - 3xy + 5$	67y - 5z
7. 14x - 10	8. $a^3 + 2a^2 - 3a + 6$

D. Circle the numerical coefficient(s) in each expressions below.

1.	Зху	2.	$3x^2 + 4y^2$
3.	-4abc	4.	$2.6x^2 - 3.6y^2 + 7$
5.	14xy ³	6.	x
7.	$4a^2b + 2ab^2$	8.	7x + y - z

E. Label each polynomial below as to whether it is a monomial, a binomial or a trinomial.

1. 3	$x^2 \div 5x - 7$	2.	ab + bc
3. 7		4.	(x)(5)
5. (3	$(3x^2)(2x)(3)$	6.	$7x^3 - 3x^2 + 5x$
7. 2	a + 3b - 4c	8.	(7x)(2y)
9. (3	$(3x^2)^3$	10.	-7
11. 1	$3x^2 - 5x$	12.	12x + 3

F. State the degree of each of the following polynomials.

	1. $3x^2$	2. a^8
	3. $30a^4 + 15a^3$	4. $6x^2 - 3x + 2$
	5. $x^3 - y^2$	6. $-5x^3 + 3x^2$
	7. x^2y^3	8. 5x
	9. $3x^2y^3$	10. $3x^5 + 4x^2y^2 - 5y^3$
G.	Complete each of the following	statements.
	1. Name the 2nd degree terr	n in the expression $3x^3 + 5x^2 - 2x$.
	2. Write any 4th degree bino	mial
	3. How many terms are in th	the expression $3 - 5xy + 3x^2y^3$?
	4. Write out the constant(s)	in the expression $3x^2 - 5xy + 2$.
	 5. Write the following polya a) 7x³ - 5x⁶ + 2x² - 8x b) 8x⁵ + 7x⁴ - 6x⁵y³ + 9x 	nomials in standard form: $x^{5} + 23$ x^{9}
	6. Write out the 2nd degree	term in the polynomial $6x^3 + 3x^2y^2 + 5xy - 7$.
	7. Write out the 3rd degree	term in the polynomial $4x^2y^3 - 7x^3 + 3x^2$.
	8. Write any 3rd degree trin	omial in standard form.
	9. Which is the numerical co	efficient in the term 7x ² y ³ z ⁴ ?
	 10. Using the expression (- a) It contains b) The second term contains 	8x ² + 3x - 5), answer the following questions. terms, and is therefore called a
	c) This polynomials is	written in the degree.
	d) The constant(s) in t	his expression is (are)
	e) The numerical coef	ficient of the 2nd term is
	11. Write any 5th degree more	nomial.
•	12. Complete the polynomia	by writing a 2nd degree term. $8x^7 + 4x^5 + $ + 9x
	13. Complete the polynomia	by writing a 3rd degree term. $7x^6 + 5x^5 - + 6x$

Polynomials

Name: _____

Date: _____

Understanding Polynomials

- 1. Using the polynomial $4x^2 y + 8$ what is/are the:
 - a) constant:
 - b) coefficient of x:
 - c) coefficient of y:
 - d) number of terms: _____
 - e) exponent of x:
- 2. Identify each polynomial as a monomial, binomial or trinomial.
 - a) 6+4bb) $p^{3}+7p+2$ c) $\frac{5}{8}x^{3}y$ d) c+3z-9
- 3. Answer the following for each polynomial
 - a) a 2b Is there a constant? b) $x^2 + y^2 + z^2$ What are the coefficients? c) 10 What is this classified as? d) 5y - 4x + 100 What is the constant? e) $6x^3$ What is the exponent? f) $\frac{5x^2y^4}{9z^3}$ What is the coefficient?
- 4. State the degree of each monomial.
 - a) 3*xyz* b) 21*k*
 - c) $9x^2y$ d) $2a^2b^2c$
 - e) 6 f) $-45pq^4$
- 5. State the degree of each polynomial.

a) 7k + 3

b) 31*a*+4*b*

- c) $11x^2 + 8y$ d) $3a^2b + 4a^2b^3 + 5$
- e) $-2a^6b^2 ab + b^7$ f) $7k + h^3$
- 6. Arrange the terms in each polynomial in descending powers.
 - a) $2y+5y^3+16y^2$ b) $-3x+x^4+5x^3-9$

c)
$$2x^2y - 3xy^3 + x^3$$

d) $3y^2x^3 - 4x^2 - 6y^2x - 8$

Lesson Two: Equivalent Expressions

Example 1:

For each expression, identify the coefficient, the variable(s), and the exponent of each variable

b) 3w b) a^2 c) -4xy d) -g

Example 2:

Identify the like terms in each group

b) 5 <i>b</i> ²	3cb	-2b	7 <i>c</i>	6 <i>b</i>
c) $3x^2$	4 <i>xy</i>	$-2x^{2}$	$7x^2$	$\frac{1}{2}y$
d) 3 <i>pq</i>	11	$-4q^{2}$	-3	pq

Example 3:

Combine like terms in each expression

a)
$$4x - 2x + 3 - 6$$

b)
$$2x^2 + 3x - 1 + x^2 - 4x - 2$$

c)
$$4 - x^2 + 2x - 5 + 3x^2 - 2x$$

Lesson Three: Adding Polynomials

Example 1:

Add 3x - 4 and 2x + 5. Simplify your answer by combining like terms

Example 2:

Add $2x^2 + 5x - 3$ and $-x^2 + x - 6$

Example 3:

Add $(-3x^2 + 6x - 5) + (4x^2 + x - 9)$

Lesson Four: Subtracting Polynomials

Opposite Polynomial:

Example 1:

What is the opposite polynomial for each of the following?

a) 3x b) -2 c) 4x - 1 d) $a^2 - 3a + 2$

Example 2:

Subtract 2x + 3 from 3x - 4. Simplify your answer by combining like terms

Example 3:

(4x - 5) - (2x + 3)

Example 3:

 $(3x^2 + 7x - 8) - (-x^2 + x - 1)$

Lesson Five: Multiplying Monomials

Think back to the exponent laws:

When multiplying powers, ______ exponents

Ex. $3x \cdot 6x^2$

When simplifying a power to a power, ______ exponents

Ex. $(2y^2)^3$

Example 1:

Use alge-tiles to determine the product of (5x)(2x)

Polynomials

Example 2:

Use exponent laws to determine the product of (3x)(2y)

Example 3:

What is an expression for the area of the rectangle?

Lesson Six: Multiplying Polynomials by Monomials

Think back to the distributive property:

Ex. 6x(2x + y)

Example 1:

Use alge-tiles to determine the product (3x)(2x + 4)

Polynomials

Example 2:

Use exponent laws to determine the product of (2x)(3x - 5)

Example 3:

The dimensions of a rectangular gym floor are represented by the expressions 4x and 5x - 3. What is a polynomial expression for the area of the gym floor? Write the expression in simplified form.

Lesson Seven: Dividing Monomials

Think back to the exponent laws:

When dividing powers, ______ exponents

Ex. $\frac{6x^2}{3x}$

Example 1:

Use alge-tiles to determine the quotient of $\frac{-10x^2}{2x}$

Example 2:

Use exponent laws to determine the quotient of $\frac{8xy}{4x}$

Example 3:

The area of a triangle is given by the expression $18x^2$. The base of the triangle is represented by 4x. What is the height of the triangle in terms of x?

Lesson Eight: Dividing Polynomials by Monomials

Example 1:

Use alge-tiles to determine the quotient of $\frac{6x^2-8x}{2x}$

Example 2:

Use exponent laws to determine the quotient of $\frac{3x^2+6x}{3x}$

Example 3:

Use exponent laws to determine the quotient of $\frac{4x^3-6x+12x^2}{2x}$