$$
\begin{gathered}
x^{2}+7 x-3 \\
4 a^{3}+7 a^{2}+a \\
n m^{2}-m \\
3 x-2 \\
5
\end{gathered}
$$

Polynomials

Mrs. Kornelsen

The definitions and examples below, show and explain most of the terminology you will be using in the algebra section.

1. Constant - A constant is a number that always has the same value. One example is the number 8 . In $2 x^{2}+9$, the 9 is the constant. Other examples are:
$3,1 / 5,3.5,-4,10, x+9,2 x+\underline{6}$
2. Variables - A variable is a letter or letters that may be replaced (substituted) by numbers. Examples are:

$$
a, x, x^{2}, y^{3}, m^{2} n^{3}, \underline{x}+z, 3 \underline{x}
$$

3. Expressions - Expressions are formed by combining constants, variables or both by adding, subtracting, multiplying or dividing. Examples are:
$a x+3 b, 5 y, 2 a-7, x^{2}+2 x-1,3 / 4 x^{2} y^{6}$
4. Terms - A term is each part of an expression separated by a plus or a minus sign. Examples are:
$a x^{2}+5 x y-7 x+3 \leftarrow$ (This expression has 4 terms.)
$2 \mathrm{x}-9 \leftarrow$ (This expression has only 2 terms.)
5. Factors - Factors are numbers or variables forming a product. Examples are:
$\mathrm{ab} \leftarrow$ (The factors are a and b .)
$3 x^{2} y \leftarrow($ The factors are $3, x, x$ and y.)
6. Coefficients (Numerical) - Numerical coefficients are numbers associated with a product. The examples are underlined below.
(32)(a), $-34 \mathrm{x}^{2}, 3.4 \mathrm{~m}^{3} \mathrm{z}^{2}$
7. Literal Coefficients - Literal coefficients are the variables (letters) associated with a product. The examples are underlined below.

$$
\text { (32)(a), }-34 \underline{x}^{2}, 3.4 \underline{m}^{3} z^{2}
$$

8. Polynomials - A polynomial is a monomial or the algebraic sum or difference of monomials. (See definitions below.)
a) monomial - a monomial can consist of any or all of the following:
9. any integer such as: $4,-3,27,-198$
10. any variable with a positive integral power such as: $y, a^{2}, m^{5},-a,-e$
11. the product of integers and a variables such as: $2 x, 3 a^{2},-3 x^{2} y^{3},(-5 y)\left(2 x^{4}\right)$
b) binomial - a binomial is the sum or difference of exactly 2 monomials as shown below:

$$
a+b^{2}, \quad 3 x^{2}-5 y^{2}, \quad 7 x-2 y, \quad 3 x+7
$$

c) trinomial - a trinomial is the sum or difference of exactly 3 monomials as shown below:
$a x^{2}+b x+c, \quad a-b+c, \quad 4 m+7 n-18, \quad 2 x-3 y+7 x$
d) We do not have special names for polynomials with $4,5,6$, etc. terms. They are just called polynomials.
9. Degree of Polynomials - The largest exponent in a polynomial or the greatest sum of the exponents in any single term of a polynomial gives us the degree of a polynomial as the examples illustrate below.
0 degree polynomials - $4,-5,8 x^{0}$
1st degree polynomials - $3 \mathrm{x},-6 \mathrm{~m}, 2 \mathrm{y}, 3 \mathrm{x}+5,8 \mathrm{n}^{1}-7$
2nd degree polynomials - $8 \mathrm{x}^{2}, 5 \mathrm{y}^{2}, 9 \mathrm{a}^{1} \mathrm{~b}^{1}, 13 \mathrm{xy}, 4 \mathrm{x}^{2}+9 \mathrm{x}-3$
3rd degree polynomials - $6 x^{3},-5 x^{2} y, 2 a^{1} b^{1} c^{1}, 5 x y z, 4 x^{3}+3 x^{2}+8,3 a b^{2}+9 a b$
4th degree polynomials $-3 x^{4},-4 a^{2} b^{2},-7 a^{4}+9 x^{2}-8 y, 9 a b c d$
10. Standard Form of Polynomials (Descending Order) - Descending order of polynomials or the standard form of polynomials is when we write the polynomial from its highest to its lowest degree as the examples illustrate.
a) $-3 x^{3}+8 x^{4}-3 x-2 x^{2}-7=8 x^{4}-3 x^{3}-2 x^{2}-3 x-7$
b) $3 x+2 x^{4}-7 x^{5}+9=-7 x^{5}+2 x^{4}+3 x+9$
c) $7 \mathrm{~b}+3 \mathrm{a}+5 \mathrm{c}-8 \mathrm{x}=3 \mathrm{a}+7 \mathrm{~b}+5 \mathrm{c}-8 \mathrm{x} \leftarrow$ (In the event all variables have the same exponent or degree, we write the terms in alphabetical order.)
11. Ascending Order of Polynomials - Ascending order of polynomials is when we write the polynomial from its lowest to its highest degree as the examples illustrate. (Note that this is not used very often.)
a) $5 \mathrm{x}^{3}-7 \mathrm{x}^{5}+3 \mathrm{x}^{2}-2=-2+3 \mathrm{x}^{2}+5 \mathrm{x}^{3}-7 \mathrm{x}^{5}$
b) $3 a^{2}+7 x-8 x^{5}+9 x^{3}=7 x+3 a^{2}+9 x^{3}-8 x^{5}$

Lesson One: Polynomial Definitions

Example 1:

For each expression, identify the number of terms and whether it is a monomial, binomial, trinomial or polynomial
a) $4 x y+3$
b) $7 a^{2}-2 a b+b^{2}$
c) $5 x^{2}+y^{2}+z^{2}-x-6$
d) 13

Example 2:

What is the number of terms and the degree of each polynomial?
a) $4 x^{2}+3$
b) $7 a^{2}-2 a b+b^{2}$
c) $5 x+z-6$
d) 7

Ordering Polynomials

Ascending order:

Descending order:

Example 3:

Order the following polynomials in ascending order of x
a) $x^{4} y+4 x y^{3}-2 x^{3} y+5 y-3$
b) $x y^{3}+x^{4} y^{2}-x^{6}$

Example 4:

Order the following polynomials in descending order of y
a) $x y^{3}+4 x^{2} y-5 x^{4} y^{7}+10 x$
b) $2 y^{8}-3 x^{2} y^{3}+4 x^{2} y^{4}-3 x$
A. How many terms are in each of the following expressions?

1. $2 x+3 y$
2. $a+b-c$
3. $3 x^{2}$
4. $(5 x)(2 y)$
5. $3 x^{2}+7 x+5$
6. $-8 x^{3}+5 x^{2}-3 x+4$
7. $(3 x)\left(-2 x^{2}\right)$
8. $\left(6 x^{2}\right) \div 2$
B. Circle the constant(s) in each of the expressions below.
9. $3 x+4$
10. $5 x+3 y$
11. $8 x^{2}-8$
12. $5 \mathrm{a}-3 \mathrm{~b}+2 \mathrm{c}+9$
13. $16 x^{2}-5+3 x$
14. $7 x^{2}-3 x+4$
15. $x-1.6$
16. $5+2 x-3 x^{2}$
C. Circle the variable(s) in each of the expressions below .
17. $3 a+5 b-6$
18. $5 x+15$
19. $3 x^{2}-4 y^{2}+2 z^{2}$
20. $a^{2}+b c-4 c^{2}$
21. $x^{2} y^{2}-3 x y+5$
22. $-7 y-5 z$
23. $14 \mathrm{x}-10$
24. $a^{3}+2 a^{2}-3 a+6$
D. Circle the numerical coefficient(s) in each expressions below.
25. $3 x y$
26. $3 x^{2}+4 y^{2}$
27. -4 abc
28. $2.6 x^{2}-3.6 y^{2}+7$
29. $14 x y^{3}$
30. x
31. $4 a^{2} b+2 a b^{2}$
32. $7 \mathrm{x}+\mathrm{y}-\mathrm{z}$
E. Label each polynomial below as to whether it is a monomial, a binomial or a trinomial.
33. $3 x^{2}+5 x-7$
34. $a b+b c$
35. 7
36. $(\mathrm{x})(5)$
37. $\left(3 x^{2}\right)(2 x)(3)$
38. $7 \mathrm{x}^{3}-3 \mathrm{x}^{2}+5 \mathrm{x}$
39. $2 a+3 b-4 c$
40. $(7 x)(2 y)$
41. $\left(3 x^{2}\right)^{3}$
42. -7
43. $13 \mathrm{x}^{2}-5 \mathrm{x}$
44. $12 \mathrm{x}+3$
45. State the degree of each of the following polynomials.
46. $3 \mathrm{x}^{2}$
47. a^{8}
48. $30 \mathrm{a}^{4}+15 \mathrm{a}^{3}$
49. $6 x^{2}-3 x+2$
50. $x^{3}-y^{2}$
51. $-5 x^{3}+3 x^{2}$
52. $x^{2} y^{3}$
53. $5 x$
54. $3 x^{2} y^{3}$
55. $3 x^{5}+4 x^{2} y^{2}-5 y^{3}$
G. Complete each of the following statements.
56. Name the 2 nd degree term in the expression $3 x^{3}+5 x^{2}-2 x$. \qquad
57. Write any 4th degree binomial. \qquad
58. How many terms are in the expression $3-5 x y+3 x^{2} y^{3}$? \qquad
59. Write out the constant(s) in the expression $3 x^{2}-5 x y+2$. \qquad
60. Write the following polynomials in standard form:
a) $7 x^{3}-5 x^{6}+2 x^{2}-8 x^{5}+23$
b) $8 x^{5}+7 x^{4}-6 x^{5} y^{3}+9 x^{9}$
61. Write out the 2 nd degree term in the polynomial $6 x^{3}+3 x^{2} y^{2}+5 x y-7$.
62. Write out the 3rd degree term in the polynomial $4 x^{2} y^{3}-7 x^{3}+3 x^{2}$. \qquad
63. Write any 3rd degree trinomial in standard form. \qquad
64. Which is the numerical coefficient in the term $7 x^{2} y^{3} z^{4}$? \qquad
65. Using the expression $\left(-8 x^{2}+3 x-5\right)$, answer the following questions.
a) It contains \qquad terms, and is therefore called a \qquad .
b) The second term contains \qquad factors and they are \qquad .
c) This polynomials is written in the \qquad degree.
d) The constant(s) in this expression is (are) \qquad .
e) The numerical coefficient of the 2nd term is \qquad .
66. Write any 5 th degree monomial.
67. Complete the polynomial by writing a 2nd degree term. $8 x^{7}+4 x^{5}+$ \qquad $+9 x$
68. Complete the polynomial by writing a 3rd degree term. $7 x^{6}+5 x^{5}-$ \qquad $+6 x$

Name: \qquad Date: \qquad

Understanding Polynomials

1. Using the polynomial $4 x^{2}-y+8$ what is/are the:
a) constant:
b) coefficient of x :
c) coefficient of y : \qquad
d) number of terms: \qquad
e) exponent of x : \qquad
2. Identify each polynomial as a monomial, binomial or trinomial.
a) $6+4 b$
b) $p^{3}+7 p+2$
c) $\frac{5}{8} x^{3} y$
d) $c+3 z-9$
3. Answer the following for each polynomial
a) $a-2 b$
Is there a constant?
b) $x^{2}+y^{2}+z^{2}$
What are the coefficients?
c) 10
d) $5 y-4 x+100$
What is this classified as?
What is the constant?
e) $6 x^{3}$
What is the exponent?
f) $\frac{5 x^{2} y^{4}}{9 z^{3}}$
What is the coefficient?
4. State the degree of each monomial.
a) $3 x y z$
b) 21 k
c) $9 x^{2} y$
d) $2 a^{2} b^{2} c$
e) 6
f) $-45 p q^{4}$
5. State the degree of each polynomial.
a) $7 k+3$
b) $31 a+4 b$
c) $11 x^{2}+8 y$
d) $3 a^{2} b+4 a^{2} b^{3}+5$
e) $-2 a^{6} b^{2}-a b+b^{7}$
f) $7 k+h^{3}$
6. Arrange the terms in each polynomial in descending powers.
a) $2 y+5 y^{3}+16 y^{2}$
b) $-3 x+x^{4}+5 x^{3}-9$
c) $2 x^{2} y-3 x y^{3}+x^{3}$
d) $3 y^{2} x^{3}-4 x^{2}-6 y^{2} x-8$

Lesson Two: Equivalent Expressions

Example 1:

For each expression, identify the coefficient, the variable(s), and the exponent of each variable
b) $3 w$
b) a^{2}
c) $-4 x y$
d) $-g$

Example 2:

Identify the like terms in each group
b) $5 b^{2}$
$3 c b$
$-2 b$
$7 c$
$6 b$
c) $3 x^{2}$
$4 x y$
$-2 x^{2}$
$7 x^{2}$
$\frac{1}{2} y$
d) $3 p q$

11
$-4 q^{2}$
-3
$p q$

Example 3:

Combine like terms in each expression
a) $4 x-2 x+3-6$
b) $2 x^{2}+3 x-1+x^{2}-4 x-2$
c) $4-x^{2}+2 x-5+3 x^{2}-2 x$

Lesson Three: Adding Polynomials

Example 1:

Add $3 x-4$ and $2 x+5$. Simplify your answer by combining like terms

Example 2:

Add $2 x^{2}+5 x-3$ and $-x^{2}+x-6$

Example 3:

Add $\left(-3 x^{2}+6 x-5\right)+\left(4 x^{2}+x-9\right)$

Lesson Four: Subtracting Polynomials

Opposite Polynomial:

Example 1:

What is the opposite polynomial for each of the following?
a) $3 x$
b) -2
c) $4 x-1$
d) $a^{2}-3 a+2$

Example 2:

Subtract $2 x+3$ from $3 x-4$. Simplify your answer by combining like terms

Example 3:

$(4 x-5)-(2 x+3)$

Example 3:

$\left(3 x^{2}+7 x-8\right)-\left(-x^{2}+x-1\right)$

Lesson Five: Multiplying Monomials

Think back to the exponent laws:

When multiplying powers, \qquad exponents

Ex. $3 x \cdot 6 x^{2}$

When simplifying a power to a power, \qquad exponents Ex. $\left(2 y^{2}\right)^{3}$

Example 1:

Use alge-tiles to determine the product of $(5 x)(2 x)$

Example 2:

Use exponent laws to determine the product of $(3 x)(2 y)$

Example 3:

What is an expression for the area of the rectangle?

Lesson Six: Multiplying Polynomials by Monomials

Think back to the distributive property:

Ex. $6 x(2 x+y)$

Example 1:

Use alge-tiles to determine the product $(3 x)(2 x+4)$

Example 2:

Use exponent laws to determine the product of $(2 x)(3 x-5)$

Example 3:

The dimensions of a rectangular gym floor are represented by the expressions $4 x$ and $5 x-3$. What is a polynomial expression for the area of the gym floor? Write the expression in simplified form.

Lesson Seven: Dividing Monomials

Think back to the exponent laws:

When dividing powers, \qquad exponents

$$
\text { Ex. } \frac{6 x^{2}}{3 x}
$$

Example 1:

Use alge-tiles to determine the quotient of $\frac{-10 x^{2}}{2 x}$

Example 2:

Use exponent laws to determine the quotient of $\frac{8 x y}{4 x}$

Example 3:

The area of a triangle is given by the expression $18 x^{2}$. The base of the triangle is represented by $4 x$. What is the height of the triangle in terms of x ?

Lesson Eight: Dividing Polynomials by Monomials

Example 1:

Use alge-tiles to determine the quotient of $\frac{6 x^{2}-8 x}{2 x}$

Example 2:

Use exponent laws to determine the quotient of $\frac{3 x^{2}+6 x}{3 x}$

Example 3:

Use exponent laws to determine the quotient of $\frac{4 x^{3}-6 x+12 x^{2}}{2 x}$

